2D-CFD Analysis of the Fluid Pressure and Velocity Distribution of Experimentally Machine Hammer Peened Surface Structures in Hydrodynamic Applications

Abstract:

Article Preview

Machine hammer peening is an incremental forming process for high frequency surface finishing of technical components. Recently, machine hammer peening has attracted automotive industry’s attention for the surface finishing and structuring of deep drawing tools. Deep drawing tools surface structured by machine hammer peening are characterized by beneficial friction and wear characteristics in lubricated sliding contacts. However, the physics of hydrodynamic effects in machine hammer peened structures is yet insufficiently researched. Therefore, this work investigates the hydrodynamic effects in surface structures generated by machine hammer peening using a two-dimensional computational fluid dynamic analysis. The effects of structure geometry, structure arrangement and selected sliding parameters on the hydrodynamic fluid pressure and velocity distribution within the structures are analysed. It was observed, that the sliding direction and the structure arrangement have a significant influence on the hydrodynamic fluid pressure maximum.

Info:

Periodical:

Edited by:

Jens P. Wulfsberg, Benny Röhlig and Tobias Montag

Pages:

174-181

Citation:

D. Trauth et al., "2D-CFD Analysis of the Fluid Pressure and Velocity Distribution of Experimentally Machine Hammer Peened Surface Structures in Hydrodynamic Applications", Applied Mechanics and Materials, Vol. 794, pp. 174-181, 2015

Online since:

October 2015

Export:

Price:

$41.00

* - Corresponding Author

[1] M. Steitz, J. Scheil, C. Müller, P. Groche, Effect of Process Parameters on Surface Roughness in Hammer Peening and Deep Rolling, Key Engineering Materials 554-557 (2013) p.1887.

DOI: https://doi.org/10.4028/www.scientific.net/kem.554-557.1887

[2] F. Bleicher, C. Lechner, C. Habersohn, E. Kozeschnik, B. Adjassoho, H. Kaminiski, Mechanism of surface modification using machine hammer peening technology, CIRP Annals - Manufacturing Technology 61(1) (2012) 375–378.

DOI: https://doi.org/10.1016/j.cirp.2012.03.139

[3] J. Wied, J, Oberflächenbehandlung von Umformwerkzeugen durch Festklopfen. PHD-Thesis TU Darmstadt (2011).

[4] F. Lienert, J. Hoffmeister, V. Schulze, Residual Stress Depth Distribution after Piezo Peening of Quenched and Tempered AISI 4140 - Proceedings of ICSR 9 (2013) 768–769.

DOI: https://doi.org/10.4028/www.scientific.net/msf.768-769.526

[5] D. Trauth, F. Klocke, F. Schongen, A. Shirobokov , Analyse und Modellierung der Schlagkraft beim elektro-dynamischen Festklopfen zur kraftbasierten Prozessauslegung, UTFScience III (2013).

[6] F. Klocke, D. Trauth, F. Schongen, A. Shirobokov, Analysis of friction between stainless steel sheets and machine hammer peened structured tool surfaces: experimental and numerical investigation of the lubricated interaction gap, Production Engineering 8(3) (2014).

DOI: https://doi.org/10.1007/s11740-013-0519-6

[7] F. Klocke, D. Trauth, M. Terhorst, P. Mattfeld, Wear analysis of tool surfaces structured by machine hammer peening for foil-free forming of stainless steel, Advanced Materials Research 1018 (2014) 317–324.

DOI: https://doi.org/10.4028/www.scientific.net/amr.1018.317

[8] D. Trauth, F. Klocke, M. Terhorst, P. Mattfeld, Physicochemical Analysis of Machine Hammer Peened Surface Structures for Deep Drawing: Determination of the Work of Adhesion and Spreading Pressure of Lubrication to Surface Structure, Journal of Tribology 137(2) (2015).

DOI: https://doi.org/10.1115/1.4029199

[9] A. Ramesh, W. Akram, S.P. Mishra, A. H Cannon, A.A. Polycarpou, W.P. King, Friction characteristics of microtextured surfaces under mixed and hydrodynamic lubrication, Tribol Int. 57(1) (2013) 170–176.

DOI: https://doi.org/10.1016/j.triboint.2012.07.020

[10] M.B. Dobrica, M. Fillon , M. D Pascovici, T. Cicone, Optimizing surface texture for hydrodynamic lubricated contacts using a mass-conserving numerical approach, Proc IMechE Part J: J Eng Tribol. 224(8) (2010) 737–750.

DOI: https://doi.org/10.1243/13506501jet673

[11] O. Reynolds, On the Theory of Lubrication, Phil Trans Roy Soc London 177 (1886) 157–237.

[12] G.S. Bower, Film Lubrication of Parallel Thrust Surfaces, Proc IMechE 155 (1946) 49.

[13] L. Rayleigh, Notes on the Theory of Lubrication, Phil Mag J Sci 35 (1918) 1–12.

[14] A. Charnes, E. Saibel A. Ying, On the Solution of the Reynolds Equation for Slider-Bearing Lubrication III, Effect of Transverse Curvature, Trans ASME 75 (1953) 507–13.

[15] V. Brizmer, Y. Kligerman, I. Etsion, A Laser Surface Textured Parallel Thrust Bearing, Tribology Transactions 46(3) (2013) 397–403.

DOI: https://doi.org/10.1080/10402000308982643