A Comprehensive Study on the Automation Potentials and Complexities of Advanced and Alternative Die-Attach Technologies for Power Electronic Applications


Article Preview

The field of power electronics packaging presents intricate and interdisciplinary challenges. System costs, reliability and performance are strongly determined by various aspects such as mechanical design, materials, thermal management and interconnect technologies. The overall costs of the product depend mainly on the complete process chain in the module development. Automation as well plays an important role and facilitates higher production rates, efficient use of materials, better product quality, and reduced factory lead times. This paper focuses on emerging interconnection technologies of bonding semiconductor components to power electronic substrates like diffusion soldering, conductive adhesive bonding and reactive multi-layer bonding. An overview on the automation potentials and complexities in individual technologies for the manufacturing of reliable and cost-effective power modules is given and discussed. Thus, a basis is created for choosing optimal die-attach technology depending on economic and technologic demand by comparing the state-of-the-art and advanced technologies.



Edited by:

Jens P. Wulfsberg, Benny Röhlig and Tobias Montag




A. Syed-Khaja et al., "A Comprehensive Study on the Automation Potentials and Complexities of Advanced and Alternative Die-Attach Technologies for Power Electronic Applications", Applied Mechanics and Materials, Vol. 794, pp. 320-327, 2015

Online since:

October 2015




* - Corresponding Author

[1] U. Scheuermann, Packaging and Reliability of Power Modules - Principles, Achievements and Future Challenges, in Proceedings of the International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (PCIM), Berlin: VDE, 2015, p.35.

[2] L. A. Navarro, X. Perpiñà, P. Godignon, J. Montserrat, V. Banu, M. Vellvehi, and X. Jordà, Thermomechanical Assessment of Die-Attach Materials for Wide Bandgap Semiconductor Devices and Harsh Environment Applications, IEEE Trans. Power Electron, vol. 29, no. 5, 2014, p.2261.

DOI: https://doi.org/10.1109/tpel.2013.2279607

[3] E. Möller, A. A. Bajwa, E. Rastjagaev, and J. Wilde, Comparison of New Die-Attachment Technologies for Power Electronic Assemblies, in Proceedings of the 64th Electronic Components and Technology Conference (ECTC), Orlando, FL, 2014, p.1707–1713.

DOI: https://doi.org/10.1109/ectc.2014.6897527

[4] G. Humpston, G. M. Jacobson, and S.P. S Sangha, Diffusion soldering for electronics manufacturing, Endeavour, Vol. 18, No. 2, 1994, p.55–60.

DOI: https://doi.org/10.1016/0160-9327(94)90063-9

[5] A. Syed-Khaja, C. Kaestle, A. Reinhardt, J. Franke, Optimized Thin-Film Diffusion Soldering for Power-Electronics Production, in Proceedings of the 36th ISSE, Alba lulia, (2013).

DOI: https://doi.org/10.1109/isse.2013.6648206

[6] A. Syed-Khaja, J. Franke, Investigations on Advanced Soldering Mechanisms for Transient Liquid Phase Soldering (TLPS) in Power Electronics, in Proceedings of the 5th ESTC, Helsinki, (2014).

DOI: https://doi.org/10.1109/estc.2014.6962773

[7] R. Luchs, Einsatzmöglichkeiten leitender Klebstoffe zur zuverlässigen Kontaktierung elektronischer Bauelemente in der SMT. Bamberg: Meisenbach, (1998).

[8] C. Goth, Verbindungstechnik, in Räumliche elektronische Baugruppen (3D-MID): Werkstoffe, Herstellung, Montage und Anwendungen für spritzgegossene Schaltungsträger, J. Franke, Ed, München: Carl Hanser, 2013, p.147–182.

DOI: https://doi.org/10.3139/9783446437784.005

[9] R. Outi, Replacing Solder with Isotropically Conductive Adhesive in Die Bonding of Power Semiconductors, in Conductive Adhesives for Electronics Packaging, J. Liu, Ed, Isle of Man: Electrochemical Publications Ltd, 1999, p.359–375.

[10] Y. Löwer, T. Krebs, and M. Thomas, Sinter Adhesive - New Horizons in Semiconductor Packaging, in Proceedings of the 13th International Conference on Electronic Packaging Technology (EPTC), Singapore, 2011, p.88–92.

DOI: https://doi.org/10.1109/eptc.2011.6184392

[11] J. Ocklenburg, E. Rastjagaev, E. Möller, and J. Wilde, Is Conductive Adhesive Bonding Suited for the Die-Attachment of Power Devices?, in Proceedings of the 8th International Conference on Integrated Power Systems (CIPS), Nürnberg, (2014).

[12] M. Müller, J. Franke, Highly Efficient Packaging Processes by Reactive Multilayer Materials for Die-Attach in Power Electronic Applications, IEEE (Ed. ): Proceedings of the 16th Electronics Packaging Technology Conference (EPTC), Singapore, 2014, p.477.

DOI: https://doi.org/10.1109/eptc.2014.7028295

[13] J. Matteau, NanoBond® assembly - A rapid, room temperature soldering process, Proceedings of the 5th International Brazing and Soldering Conference IBSC 2012, Las Vegas, NV, (2012).

[14] G. Hemken, Ch. Walz, J. Heyn, P. Blumenthal, K. Dröder, Einsatz von reaktiven Multischichten zum Fügen von Elektronikkomponenten, Proceedings of 7th DVS/GMM-Tagung EBL 2014, Fellbach, Germany, 2014, pp.271-277.

[15] M. Herr, Fügen von Hochvolt-Komponenten mittels reaktiver Nanometer-Multischichten, Dissertation, Technische Universität Berlin, Cuvillier, Göttingen, (2012).