A Generalized Elasto-Plastic Micro-Polar Constitutive Model

Abstract:

Article Preview

This paper summarizes the implementation of an elasto-plastic constitutive model for a micro-polar continuum in the constitutive models framework of the software INSANE (INteractive Structural ANalysis Environment). Such an implementation is based on the tensorial format of a unified constitutive models formulation, that allows to implement different constitutive models independently on the peculiar numerical method adopted for the solution of the problem. The basic characteristics of the micro-polar continuum model and of the unified formulation of constitutive models are briefly recalled. A generalization of the micro-polar model is then introduced in order to include this model in the existent tensor-based formulation. Finally, an enhanced version of the general closest-point algorithm, ables to manage the generalized micro-polar formulation, is derived. A strain localization problem modeling illustrates the implementation.

Info:

Periodical:

Edited by:

Prof. Dashnor Hoxha, Prof. Ian McAndrew and Prof. Anh Dung Ngo

Pages:

505-509

DOI:

10.4028/www.scientific.net/AMM.798.505

Citation:

L. Gori et al., "A Generalized Elasto-Plastic Micro-Polar Constitutive Model", Applied Mechanics and Materials, Vol. 798, pp. 505-509, 2015

Online since:

October 2015

Export:

Price:

$35.00

* - Corresponding Author

[1] I. Carol, E. Rizzi, K. Willam: Int. J. Solids Structures Vol. 31-20 (1994), p.2835.

[2] S.S. Penna: Formulação multipotencial para modelos de degradação elástica: unificação teórica, proposta de novo modelo, implementação computacional e modelagem de estruturas de concreto, Ph.D. Thesis (in portuguese), UFMG – Federal University of Minas Gerais, Belo Horizonte, Brazil, (2011).

DOI: 10.14393/19834071.2016.34666

[3] P.D. Alves, F.B. Barros, R.L.S. Pitangueira: Adv. Eng. Softw. Vol. 58 (2013), p.1.

[4] R. de Borst, L.J. Sluys: Comput. Methods in Appl. Mech. Eng. Vol. 90 (1991), p.805.

[5] R. de Borst: Comput. Methods in Appl. Mech. Eng. Vol. 103 (1993), p.347.

[6] J.S. Fuina: Formulações de modelos constitutivos de microplanos para contínuos generalizados, Ph.D. Thesis (in portuguese), UFMG – Federal University of Minas Gerais, Belo Horizonte, Brazil, (2009).

[7] M.M. Iordache, K. Willam: Comput. Methods in Appl. Mech. Eng. Vol. 151 (1998), p.559.

[8] H.B. Mühlhaus, I. Vardoulakis: Géotechnique Vol. 37 (1987), p.271.

[9] J.C. Simo, T.J.R. Hughes: Computational Inelasticity, Springer-Verlag New York (1998).

[10] Y.B. Yang, M.S. Shien: AIAA Vol. 28-12 (1990), p.2110.

In order to see related information, you need to Login.