Integral Sliding Mode Control of DC Servo-Driven Conveyor System

Abstract:

Article Preview

DC servo systems which are utilized in many industries require efficient and robust control strategies for achieving specific duties accurately. An integral sliding mode control (ISMC) is designed for position control of DC servo-driven conveyor system in this work. The ISMC which maintains the robustness, linearization and systematic design procedure of the conventional sliding modes is aimed to solve robust position control problem under load uncertainties. Performance and robustness of the ISMC are compared with the PID controller. Numerical and experimental results are presented to demonstrate the validity, feasibility and effectiveness of the designed control technique.

Info:

Periodical:

Edited by:

Guanghsu Chang, Jieh-Shian Young and Wirachman Wisnoe

Pages:

1177-1182

Citation:

G. Ablay and Y. Eroğlu, "Integral Sliding Mode Control of DC Servo-Driven Conveyor System", Applied Mechanics and Materials, Vols. 799-800, pp. 1177-1182, 2015

Online since:

October 2015

Export:

Price:

$38.00

[1] A. Šabanovic: Control Engineering Practice Vol. 1(3) (1993), p.519.

[2] V. I. Utkin, J. Guldner and J. Shi: Sliding Mode Control in Electromechanical Systems (CRC Press, 2009).

[3] Z. H. Akpolat, G. M. Asher and J. Arellano-Padilla: Control Engineering Practice Vol. 12(8) (2004), p.933.

[4] Y. -J. Li and S. -C. Tien: Asian J Control Vol. 16(6) (2014), p.1602.

[5] F. Betin, D. Pinchon and G. -A. Capolino: IEEE Transactions on Industrial Electronics Vol. 49(2) (2002), p.462.

[6] P. H. Chang and J. W. Lee: Control Engineering Practice Vol. 2(2) (1994), p.263.

[7] S. -Y. Chang, P. -H. Yu and W. -C. Su: Control Engineering Practice Vol. 21(11) (2013), p.1577.

[8] D. Almakhles, A. Swain and N. Patel: IEEE Industrial Electronics Vol. PP(99) (2014), p.1.

[9] C. M. Liaw, R. Y. Shue, H. C. Chen and S. -C. Chen: IEE Proceedings Electric Power Applications Vol. 148(2) (2001), p.111.

[10] Y. -S. Lu: Control Engineering Practice Vol. 16(5), p.597.

[11] S.A. Niapour, M. Tabarraie and M. R. Feyzi: Control Engineering Practice Vol. 24 (2014), p.42.

[12] J. -X. Xu, T. -H. Lee and Y. -J. Pan: Mechatronics Vol. 13(7) (2003), p.755.

[13] F.J. Chang, S. -H. Twu and S. Chang: IEEE Trans Industrial Electronics Vol. 39(1) (1992), p.25.

[14] J. Yao, Z. Jiao and D. Ma: IEEE Trans Industrial Electronics Vol. 61(7) (2014), p.3630.

[15] M. Ruderman: IEEE Transactions on Industrial Electronics Vol. 61(7) (2014), p.3727.

[16] J. Linares-Flores, H. Sira-Ramírez, E. Yescas-Mendoza and J. J. Vásquez-Sanjuan: Asian Journal of Control Vol. 14(1) (2012), p.45.

[17] G. Ablay: IET Control Theory and Applications Vol. 8(17), (2014), p.1896.

[18] Z. -P. Jiang and I. Marcels: IEEE Transactions on Automatic Control Vol. 46(8) (2001), p.1336.

[19] J. F. Gieras: Permanent Magnet Motor Technology Design and Applications (CRC Press, 2002).

[20] A. Hughes: Electric Motors and Drives Fundamentals, Types and Applications (Newnes, 2013).

[21] A. Datta, M. -T. Ho and S. P. Bhattacharyya: Structure and Synthesis of PID Controllers (Springer New York 2000).

[22] K. J. Åström and T. Hägglund: PID Controllers - Theory, Design, and Tuning (Instrument Society of America 1995).

[23] O. Yaniv and M. Nagurka: IEEE Trans Automatic Control Vol. 48(11) (2003), p. (2069).