GreenBearings – Friction Behaviour of DLC-Coated Dry Running Deep Groove Ball Bearings


Article Preview

Due to the use of rolling bearings instead of plain bearings friction and wear are drastically reduced in all kind of machines. However, despite the high technical standard of modern rolling bearings there is still a significant potential for optimization. Preliminary Studies show a reduction of the friction torque of up to 44 % compared to conventional rolling bearings because of the use of tribological coatings in certain applications. Based on the millionfold usage of rolling bearings in all industrial fields the reduced lost energy adds up to a remarkable potential for energy savings. If friction and wear are lowered sufficiently, the use of conventional lubricants based on mineral oil can be successively decreased or even completely avoided. In the latter case, the socalled dry running of the rolling bearing, the energy consumption of machines and systems can additionally be reduced significantly. For example, pumping stations or compressed air units, which would be necessary for transporting or spraying the lubricants, can then be saved.This paper presents first results of DLC-coated deep groove ball bearings, which are tested in a four-bearing-test-rig under purely radial load with respect to their friction and wear behaviour.



Edited by:

Jörg Franke and Sven Kreitlein




J. Kröner et al., "GreenBearings – Friction Behaviour of DLC-Coated Dry Running Deep Groove Ball Bearings", Applied Mechanics and Materials, Vol. 805, pp. 147-153, 2015

Online since:

November 2015




* - Corresponding Author

[1] J. A. Williams, The influence of repeated loading, residual stresses and shakedown on the behaviour of tribological contacts, Tribology International 38 (2005) 786–797.


[2] J. Brändlein, P. Eschmann, L. Hasbargen, K. Weigand, Ball and Roller Bearings, Theory, Design and Application, third edition, John Wiley & Sons, Chichester, 1999.

[3] T. A. Harris, M. N. Kotzalas, Rolling Bearing Analysis, Essential Concepts of Bearing Technology, fifth edition, CRC Taylor & Francis, Boca Raton, (2007).

[4] T. Sander, J. Kröner, L. Dobrenizki, S. Tremmel, S. Wartzack, T. Hosenfeldt, Y. Musayev, Energieeffizienz und Ressourcenschonung durch beschichtete Wälzlager, Konstruktion 5 (2014) 20–21.

[5] F. -W. Bach, K. Möhwald, A. Laarmann, T. Wenz, Modern Surface Technology, Wiley-VCH, Weinheim, (2006).

[6] T. Stahl, S. Tremmel, S. Wartzack, Reibungs- und Temperaturentwicklung in Wälzlagern unter Kollektivbelastung, Konstruktion 7/8 (2012) 67–74.

[7] T. Stahl, S. Tremmel, H. Meerkamm, Der Einfluss von Drehzahl- und Lastkollektiven auf das Reibungsverhalten von Wälzlagern, Dresdner Maschinenelemente Kolloquium, 2009, S. 531-539.

[8] T. Stahl, Einfluss von Drehzahl- und Lastkollektiven auf die Entwicklung von Reibmoment und Temperatur in Wälzlagern, dissertation, Friedrich-Alexander-University Erlangen-Nürnberg, (2011).

[9] H. Birkhofer, T. Kümmerle, Feststoffgeschmierte Wälzlager, Einsatz, Grundlagen und Auslegung, Springer-Verlag, Berlin Heidelberg, (2012).


[10] H. Hetzner, J. Schaufler, S. Tremmel, K. Durst, S. Wartzack, Failure mechanisms of a hydrogenated amorphous carbon coating in load-scanning tests, Surface & Coatings Technology 206 (2012) 4864–4871.


[11] Schaeffler Technologies GmbH & Co. KG (Hrsg. ), Rolling Bearing Damage, Recognition of damage and bearing inspection, Herzogenaurach, Publ. No. WL 82 102/3 EA (2001), (2010).