Simulation-Based Optimization of the Energy Consumption in the Hardening Process for Calcium Silicate Masonry Units


Article Preview

Owing to a high cost pressure and the need for a reduction of carbon dioxide emissions for manufacturing calcium silicate masonry units (CS), the CS-industry strives to cut the energy consumption. The most energy consuming process step is the autoclaving. About 87% of the energy is required for this particular process step, where the green bodies are steam-hardened at 200°C.For reducing the energy consumption, most of the alternatives aim at optimizing the complete manufacturing process. In this paper, the focus is put on an optimized loading process for the autoclaves, in consideration of preceding and subsequent process steps. For this purpose, a simulation model is developed, where different strategies of loading are implemented and tested. This model can be used to find optimally scheduled assignments of production orders to the available autoclaves, based on the volume of each manufactured product.The analysis of the tested strategies shows, that it is possible to save up to almost 9 % of the required energy for autoclaving by an optimized assignment of the available autoclaves.



Edited by:

Jörg Franke and Sven Kreitlein




T. Donhauser et al., "Simulation-Based Optimization of the Energy Consumption in the Hardening Process for Calcium Silicate Masonry Units", Applied Mechanics and Materials, Vol. 805, pp. 249-256, 2015

Online since:

November 2015




* - Corresponding Author

[1] W. Eden and W. -D. Steinmann, Reduzierung des Energieverbrauchs und der produktions- technisch bedingten CO2-Emissionen bei der Kalksandstein-Herstellung durch energie-technische Optimierungsmaßnahmen, Forschungsbericht Nr. 112 der Forschungsvereinigung Kalk-Sand eV, Hannover, (2011).

[2] T. Kudlich, Optimierung von Materialflußsystemen mit Hilfe der Ablaufsimulation, Dissertation, Lehrstuhl für Fördertechnik Materialfluss Logistik, TU München, (2000).

[3] T. Homem-de-Mello, A. Shapiro et al., Finding Optimal Material Release Times Using Simulation-Based Optimization, Management Science, vol. 45, no. 1, p.86–102, (1999).


[4] B. Kádár, A. Pfeiffer, and L. Monostori, Discrete event simulation for supporting production planning and scheduling decisions in digital factories, in Proceedings of the 37th CIRP international seminar on manufacturing systems, 2004, p.444–448.

[5] P. Solding and P. Thollander, Increased Energy Efficiency in a Swedish Iron Foundry Through Use of Discrete Event Simulation, in 2006 Winter Simulation Conference, p.1971–(1976).


[6] J. Kohl, S. Spreng, and J. Franke, Discrete Event Simulation of Individual Energy Consumption for Product-varieties, Procedia CIRP, vol. 17, p.517–522, (2014).


[7] S. Andradóttir, K. J. Healy et al., Using simulation to schedule manufacturing resources, in the 29th conference, p.750–757.

[8] M. Mutsaers, L. Ozkan, and T. Backx, Scheduling of energy flows for parallel batch processes using max-plus systems, in 8th IFAC International Symposium on Advanced Control of Chemical Processes, Red Hook, NY: Curran, (2012).


[9] H. Gundlach and B. Sachsa, Kalksandstein-Technologie, Teil IX: Die Dampfhärtung, in TIZ-Fachberichte, (1984).

[10] W. Eden, A. van Briel, H. Müller, and S. Wolfram, Maßnahmen zur Energieeinsparung bei der Kalksandstein-Produkion, Forschungsbericht Nr. 104 der Forschungsvereinigung Kalk-Sand eV, Hannover, (2007).

[11] W. Eden, Hinweise zur Kosten- und Energieeinsparung bei der Kalksandstein-Produktion, Forschungsbericht Nr. 91 der Forschungsvereinigung Kalk-Sand eV, Hannover, (2001).