Energy Efficiency and Productivity Optimization of Industrial Cleaning Equipment


Article Preview

Advanced cleanliness requirements in production are forcing industrial companies to include new cleaning processes into their manufacturing process. Complex cleaning operation procedures can lower process productivity and at the same time are responsible for substantial parts of the overall energy consumption. An optimization of cleaning processes with respect to cleaning duration, energy consumption and efficiency can therefore contribute to cost reduction significantly. This article presents a procedure for real data based assessment of industrial cleaning equipment. Based upon the resulting information of the procedure, productivity ratios and energy consumptions can be determined up to individual cleaning components. This creates the required transparency to derive customized production and energy efficiency optimization measures.



Edited by:

Jörg Franke and Sven Kreitlein




F. Kübler et al., "Energy Efficiency and Productivity Optimization of Industrial Cleaning Equipment", Applied Mechanics and Materials, Vol. 805, pp. 265-272, 2015

Online since:

November 2015




* - Corresponding Author

[1] International Energy Agency. World energy outlook, Paris: OECD/IEA, (2012).

[2] Verband der Automobilindistrie: Band 19; Prüfung der Technischen Sauberkeit - Partikelverunreinigungen funktionsrelevanter Automobilteile, Frankfurt (2004).

[3] Henriques, E., Peças, P., Silva, A. Technology and manufacturing process selection: The product life cycle perspective. Springer, (2014).

[4] Schau, E. M.; Traverso, M.; Finkbeiner, M.: Life cycle approach to sustainability assessment – a case study of remanufactured alternators. In: Proceedings of the 1st International Conference on Remanufacturing. Glasgow (2011).


[5] Zandin, K. Maynard's industrial engineering handbook. New York: McGraw-Hill, (2001).

[6] Garcia, M-P.; Arcelus, J. S. M.; Viles E. A Framework Based on OEE and Wireless Technology for Improving Overall Manufacturing Operations, in: Advances in production management systems. Value networks: Innovation, technologies, and management, IFIP WG 5. 7 International Conference, APMS 2011, Frick, J; Laugen, B. T. [eds. ], pp.132-139, Stavanger, Norway. New York: Springer, (2011).


[7] Cottyn, J.; Landeghem, H.; Stockman, K.; Derammelaere, S. A Method to Align a Manufacturing Execution System with Lean objectives, in: Proceedings of the 19nd International Conference on Production Research ICPR19, Wang, G. and Wong, T. (eds. ), pp.211-217. Shanghai, China, (2009).


[8] European Parliament. Towards a thematic strategy on the sustainable use of natural resources. Communication from the Commission to the Council and the European Parliament. Luxembourg: Office for Official Publications of the European Communities (EDC collection), (2003).

[9] Objectives ISO 14955-1. Design methodology for energy-efficient machine tools, working draft commented, comments discussed, committee draft until 2011-05-15, (2011).

[10] Steinhilper, R.; Freiberger, S.; Kübler, F.; Böhner, J. RFID Integrated Adaption of Manufacturing Execution Systems for Energy Efficient Production, in: Re-engineering manufacturing for sustainability: Proceedings of the 20th CIRP Conference on Life Cycle Engineering, Nee, A. Y. C.; Song, B.; Ong, S. -O. [eds. ], pp.123-128. Singapore: Springer, (2013).


[11] Linke, B.; Overcash, M. Life Cycle Analysis of Grinding, in: Leveraging Technology for a Sustainable World: Proceedings of the 19th CIRP Conference on Life Cycle Engineering, Dornfeld, D. A. and Linke, S. B. (eds. ), Berkeley, USA, pp.293-298. Heidelberg: Springer, (2012).


[12] Brecher, C.; Bäumler, S.; Jasper, D.; Triebs, J. Energy Efficient Cooling Systems for Machine Tools, in: Leveraging Technology for a Sustainable World: Proceedings of the 19th CIRP Conference on Life Cycle Engineering, Dornfeld, D. A. and Linke, S. B. (eds. ), Berkeley, USA, pp.239-244. Heidelberg: Springer, (2012).


[13] Muthiah, K. M. N.; Huang, S. H.; Mahadevan, S. Automating factory performance diagnostics using overall throughput effectiveness (OTE) metric, in: Int J Adv Manuf Technol 36 (7-8), S. 811–824, (2008).


[14] Ben-Daya, M. Handbook of maintenance management and engineering. London: Springer, (2009).

[15] Böhner, J.; Kübler, F.; Steinhilper, R. Assessment of Energy Saving Potentials in Manufacturing Operations, in: Challenges for Sustainable Operation: Proceedings of the 22nd International Conference on Production Research ICPR22. Paraná, Basil, (2013).

[16] Steinhilper, R.; Kübler, F.; Hamacher, M.; Böhner, J. et al. Minimierung nicht wertschöpfender Energieaufwände durch energetische Anlagenoptimierung: Ergebnisbericht zum Verbundvorhaben. Stuttgart: Fraunhofer Verlag, (2015).

[17] Kreitlein, S.; Höft, A.; Schwender, S.; Franke, J.: Green Factories Bavaria: A Network of Distributed Learning Factories for Energy Efficient Production. In: 5th Conference on Learning Factories 32(0), S. 58-63, (2015).


[18] Freiberger, S.; J. Böhner, J.; Kreitlein, S.; Steinhilper, R.; Franke, J.: Green Factory Bavaria Methodenentwicklung und Wissenstransfer zur Energieeffizienzsteigerung. In: www. elektrotechnik. de - Automation Valley 2012, elektro technik, Vogel Media Business Verlag, (2012).

[19] Karl, F.; Schnellbach, P.; Reinhart, G.; Böhner, J.; Freiberger, S.; Steinhilper, R.; Kreitlein, S.; Franke, J.; Maier, T.; Pohl, J.; Zäh, M. F.: Green Factory Bavaria Demonstrations-, Lehr- und Forschungsplattform zur Erhöhung der Energieeffizienz. In: wt Werkstattstechnik online Jahrgang 102 H. 9, Springer-VDI-Verlag GmbH & Co. KG, Düsseldorf, (2012).

Fetching data from Crossref.
This may take some time to load.