Robust Truss Topology Design with Beam Elements via Mixed Integer Nonlinear Semidefinite Programming


Article Preview

In this article, we propose a nonlinear semidefinite program (SDP) for the robust trusstopology design (TTD) problem with beam elements. Starting from the semidefinite formulation ofthe robust TTD problem we derive a stiffness matrix that can model rigid connections between beams.Since the stiffness matrix depends nonlinearly on the cross-sectional areas of the beams, this leads toa nonlinear SDP. We present numerical results using a sequential SDP approach and compare them toresults obtained via a general method for robust PDE-constrained optimization applied to the equationsof linear elasticity. Furthermore, we present two mixed integer semidefinite programs (MISDP), onefor the optimal choice of connecting elements, which is nonlinear, and one for the correspondingproblem with discrete cross-sectional areas.



Edited by:

Peter F. Pelz and Peter Groche




T. Gally et al., "Robust Truss Topology Design with Beam Elements via Mixed Integer Nonlinear Semidefinite Programming", Applied Mechanics and Materials, Vol. 807, pp. 229-238, 2015

Online since:

November 2015




* - Corresponding Author

[1] M. P. Bendsøe, A. Ben-Tal, J. Zowe, Optimization methods for truss geometry and topology design, Struct. Optimization 7: 3 (1994) 141-159.


[2] M. P. Bendsøe, O. Sigmund, Topology Optimization: Theory, Methods and Applications, Springer Science & Business Media, Berlin and Heidelberg, (2003).

[3] A. Ben-Tal, A. Nemirovski, Robust truss topology design via semidefinite programming, SIAM J. Optim. 7: 4 (1997) 991-1016.


[4] D. de Klerk, D. J. Rixen, S. N. Voormeeren, General framework for dynamic substructuring: history, review, and classification of techniques, AIAA J. 46: 5 (2008) 1169-1181.


[5] H. Wolkowicz, R. Saigal, L. Vandenberghe, Handbook of Semidefinite Programming: Theory, Algorithms and Applications, Kluwer Academic Publishers, Boston, (2003).

[6] A. Ben-Tal, L. El Ghaoui, A. Nemirovksi, Robust Optimization, Princeton University Press, Princeton and Oxford, (2009).

[7] K. Habermehl, Robust Optimization of Active Trusses via Mixed-Integer Semidefinite Programming, PhD thesis, TU Darmstadt, (2014).

[8] B. Klein, FEM - Grundlagen und Anwendungen der Finite-Element-Methode im Maschinen- und Fahrzeugbau, ed. 8, Vieweg+Teubner-Verlag, Wiesbaden, (2012).

[9] J. S. Przemieniecki, Theory of Matrix Structural Analysis, McGraw-Hill, New York, (1968).

[10] A. Sichau, Robust Nonlinear Programming with Discretized PDE Constraints using Secondorder Approximations, PhD thesis, TU Darmstadt, (2014).

[11] A. R. Conn, N. I. M. Gould, P. L. Toint, Trust-Region Methods, SIAM, Philadelphia, (2000).

[12] M. Ulbrich, S. Ulbrich, Nichtlineare Optimierung, Birkhäuser Verlag, Basel, (2012).

[13] R. Correa, C. Ramirez, A global algorithm for nonlinear semidefinite programming, SIAM J. Optim. 15: 1 (2004) 303-318.


[14] J. F. Sturm, Using SeDuMi 1. 02, a MATLAB toolbox for optimization over symmetric cones, Optim. Method. Softw. 11-12 (1999) 625-653.


[15] P. Bonami, A. Lodi, A. Tramontani, S. Wiese, On mathematical programming with indicator constraints, Math. Program. (2015) 1-33.


[16] S. Mars, Mixed-Integer Semidefinite Programming with an Application to Truss Topology Design, PhD thesis, FAU Erlangen-Nürnberg, (2013).

[17] T. Achterberg, SCIP, Solving constraint integer programs, Math. Program. Comput. 1: 1 (2009) 1-41.

[18] S. J. Benson, Y. Ye, Algorithm 875: DSDP5 - software for semidefinite programming, ACM Trans. Math. Software 34: 3 (2008) 1-20.