Proper LabVIEW Instrumentation of the Robot’s Kinematics and Dynamics Behavior

Abstract:

Article Preview

The most important in the study of the robots is the kinematic and dynamic analyze. Many researchers studied the kinematics or dynamics without simulation and assisted analyze that it is very heavy to understand the behavior and to show some characteristics. The paper shows one assisted method by using the virtual proper LabVIEW instrumentation (VI). For the forward kinematics (FK) and for direct dynamics (DD) was used one recurrent matrix method which was developed with quaternion algebra, that will be possible to use in many different other types of robots, only by initial settings of the type of joints, the movement axis, the home position, the dimension of each robot’s body, the application point in the working space of the manufacturing cells and the internal coordinates in each joint. For the inverse kinematics (IK) we used the Iterative Pseudo Inverse Jacobian Matrix Method (IPIJMM) coupled with the proper Sigmoid Bipolar Hyperbolic Tangent Neural Network with Time Delay and Recurrent Links (SBHTNN-TDRL). The paper describe all steps in one case study to obtain the space curve in different Euller planes by using one arm type robot and the proposed VI-s. The presented method and the LabVIEW VI-s are generally and they can be used in all other robots types and for all other conventional and unconventional space curves.

Info:

Periodical:

Edited by:

Prof. Adrian Olaru

Pages:

291-299

DOI:

10.4028/www.scientific.net/AMM.811.291

Citation:

A. Olaru et al., "Proper LabVIEW Instrumentation of the Robot’s Kinematics and Dynamics Behavior", Applied Mechanics and Materials, Vol. 811, pp. 291-299, 2015

Online since:

November 2015

Export:

Price:

$35.00

* - Corresponding Author

[1] Kucuk, S., Bingul Z. Industrial Robotics: Theory, Modelling and Control, Forward and Inverse Kinematics, edited by Sam Cubero, ISBN 3-86611-285-8, (2006).

DOI: 10.5772/5015

[2] De Wit, C. C.; Siciliano, B. & Bastin, G. Theory of Robot Control, Springer & Verlag, ISBN-10: 3540760547, London, U.K., (1996).

[3] Jingguo Wang, Yangmin Li, and Xinhua Zhao. Inverse Kinematics and Control of a 7-DOF Redundant Manipulator Based on the Closed-Loop Algorithm, International Journal of Advanced Robotic Systems, Vol. 7, No. 4, ISSN 1729-8806, 2010, pp.1-9.

DOI: 10.5772/10495

[4] P.J. Alsina, N.S. Gehlot, Direct and inverse kinematics of robot manipulator based on modular neural networks, ICARCV, IEEE, pp.1743-7, 3, (1994).

[5] R. Manseur, D. Keith, A fast algorithm for reverse kinematics analysis of robot manipulator, International Journal of Robotics Research, 7 (3), 1998, pp.622-648.

[6] Li-Chun Wang, Chih Cheng Chen, A combined optimization method for solving the inverse kinematics problem of mechanical manipulators, IEEE Transaction on Robotics and Automation, vol. 7, nr. 4, (1991).

[7] Ch. Welman, Inverse kinematics and geometric constraints, thesis Master of Science, Simon Fraser University, Canada, (1989).

[8] D. Gorinevsky,T. Connoly, Compare of some neural network and scattered data approximations: The inverse manipulator kinematics example, Neural computation, 3 (6), pp.521-542.

DOI: 10.1162/neco.1994.6.3.521

[9] L. Lee, Training feedforward neural networks: An algorithm give improve generalization, Neural Networks, 10 (1), pp.61-68, (1997).

DOI: 10.1016/s0893-6080(96)00071-8

[10] Choi, S. -B. & Lee, S. -K. (2001) A Hysteresis Model for the Field-Dependent Damping Force of a Magnetorheological Damper, Journal of Sound and Vibration 245(2), p.375. 383.

DOI: 10.1006/jsvi.2000.3539

[11] Dyke, S.J., Spencer, B.F. Jr., Sain, M.K. & Carlson, J.D. (1998) An experimental study of MR dampers for seismic protection, Smart Mater. Struct, 7, pp.693-703.

DOI: 10.1088/0964-1726/7/5/012

[12] O. Khatib, A united approach to motion and force control of robot manipulators: The operational space formulation, Int. J. Robotics Research 3(1), 43–53 (1987).

DOI: 10.1109/jra.1987.1087068

[14] O. Khatib, Inertial properties in robotics manipulation: An object-level framework, Int. J. Robotics Research 14(1), 19–36 (1995).

DOI: 10.1177/027836499501400103

[15] O. Khatib, K. Yokoi, O. Brock, K. -S. Chang and A. Casal, Robots in human environments: Basic autonomous capabilities, Int. J. Robotics Research 18(7), 175–183 (1999).

[16] O. Khatib, K. Yokoi, K. -S. Chang, D. Ruspini, R. Holmberg and A. Casal, Coor- dination and decentralized cooperation of multiple mobile manipulators, J. Robotic Systems 13(11), 755–764 (1996).

DOI: 10.1002/(sici)1097-4563(199611)13:11<755::aid-rob6>3.3.co;2-5

[17] J. J. Kuffner and S. M. LaValle, RRT-Connect: An efficient approach to single-query path planning, in Procs. IEEE Int. Conf. Robotics and Automation, San Francisco, California, USA, April (2000).

DOI: 10.1109/robot.2000.844730

[18] Y. Kuroki, B. Blank, T. Mikami, P. Mayeux, A. Miyamoto, R. Playter, K. Nagasaka, M. Raibert, M. Nagano and J. Yamaguchi, Motion creating system for a small biped entertainment robot, in Procs. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Las Vegas, Nevada, USA, October 2003, p.1394.

DOI: 10.1109/iros.2003.1248839

[19] K. Nishiwaki, T. Sugihara, S. Kagami, F. Kanehiro, M. Inaba and H. Inoue, Design and development of research platform for perception-action integration in humanoid robot H6, in Procs. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Vol. 3, Takamatsu, Japan, October 2000, p.1559.

DOI: 10.1109/iros.2000.895195

[20] K. C. Park, P. H. Chang and S. Lee, Analysis and control of redundant manipulator dynamics based on an extended operational space, Robotica 19, 649–662 (2001).

DOI: 10.1017/s0263574701003599

[21] T. Mikolajczyk, K. Bednarczyk and A. Mikolajczyk, Model of human hand controlled using pneumatic muscles, Applied Mechanics and Materials, Vol. 555 (2014) 155-162.

DOI: 10.4028/www.scientific.net/amm.555.155

[22] Step2CNC. Retrieved 05. 01. 2015, www. akcesoria. cnc. info. pl/step2cnc. htm.

[23] T. Mikolajczyk, A. Borboni, D. Mackowski and M. Matuszewski, Example of tool with two numerical controlled axes, Applied Mechanics and Materials, Vol. 772 (2015) 224-229.

DOI: 10.4028/www.scientific.net/amm.772.224

[24] T. Mikolajczyk, D. Dorsz and L. Romanowski, Design and control system of parallel kinematics manipulator, Applied Mechanics and Materials, Vol. 436 (2013) 390-39.

DOI: 10.4028/www.scientific.net/amm.436.390

[25] Olaru, A., Oprean, A., Olaru, S. Optimizing the dynamic behavior of the industrial robots by using the smart dampers, (in Romanian languages), Printech Printed House, Bucharest, (2010).

[26] Olaru, A, Olaru, S. and Mihai, N., Proper Assisted Research Method Solving of the Robots Inverse Kinematics Problem, Applied Mechanics and Materials, vol. 555 (2014) 135-147.

DOI: 10.4028/www.scientific.net/amm.555.135

[27] A. Olaru, S. Olaru, L. Ciupitu, Assisted research of the neural network by bach propagation algorithm, OPTIROB 2010 International Conference, Calimanesti, Romania, The Reserch Publishing Services Singapore Book, pp.194-200, (2010).

[28] Olaru, A., Olaru, S., Paune D., Ghionea A. Assisted research of the neural network, OPTIROB 2010 International Conference, Calimanesti, Romania, The Research Publishing Services Singapore Book, pp.189-194 , (2010).

DOI: 10.4028/www.scientific.net/amr.463-464.1098

[29] Olaru, A., Olaru, S. Assisted research of the neural network with LabVIEW instrumentation, IEEE ICMENS-2010 Proceedings, Changsha, China, pp.1-8, (2010).

[30] Olaru, A., Oprean, A., Olaru, S., Paune, D. Optimization of the neural network by using the LabVIEW instrumentation, IEEE ICMERA 2010 Proceedings, ISBN 978-1-4244-8867-4, IEEE catalog number CFP1057L-ART, pp.40-44, (2010).

DOI: 10.4028/www.scientific.net/amr.463-464.1011

In order to see related information, you need to Login.