Effect of Friction Stir Welding Process Parameters on Temperature Profile and Tensile Strength of Dissimilar Aluminum Alloys


Article Preview

The aim of this research is to study the effect of Friction Stir Welding (FSW) process parameters such as tool rotational speed and welding speed on temperature distribution and tensile strength of dissimilar AA5083-O and AA6063-T6 joint welded by FSW. Peak temperature at retreating side was observed lower as compared to advancing side for each experiment. Peak temperature decreases with decreasing the tool rotational speed but vice versa with welding speed. ANOVA indicated that the temperature profile was strongly dependent on the tool rotation speed than the welding speed and it also showed that welding speed is the main process parameter that has highest effect on tensile strength of welded joint.



Edited by:

Dr. T. Rajmohan, Dr. S. Arumugam and Dr. K. Palanikumar




S. K. Gupta et al., "Effect of Friction Stir Welding Process Parameters on Temperature Profile and Tensile Strength of Dissimilar Aluminum Alloys", Applied Mechanics and Materials, Vols. 813-814, pp. 425-430, 2015

Online since:

November 2015




* - Corresponding Author

[1] K. J. Colligan, Frictions stir welding for ship construction, Concurrent Technologies Corporation, Harrisburg PA (2004).

[2] Z. Y. Ma, Friction stir processing technology: a review, Metall. Mater. Trans. A 39 (2008) 642–658.

[3] R. S. Mishra, Z. Y. Ma, Friction stir welding and processing, Mater. Sci. Eng.: R 50 (2005) 1-78.

[4] A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, W. S. Miller, Recent development in aluminum alloys for aerospace applications, Mater. Sci. Eng.: A 280 (2000) 102–107.

DOI: https://doi.org/10.1016/s0921-5093(99)00674-7

[5] R. Palanivel, P. K. Mathews, N. Murugan, I. Dinaharan, Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys Mater. Des. 40 (2012) 7–16.

DOI: https://doi.org/10.1016/j.matdes.2012.03.027

[6] M. J. Peel, A. Steuwer, P. J. Withers, T. Dickerson, Q. Shi and H. Shercliff, Dissimilar friction stir welds in AA5083–AA6082. Part I: process parameter effects on thermal history and weld properties, Metall. Mater. Trans. A 37 (2006) 2183–2193.

DOI: https://doi.org/10.1007/bf02586138

[7] S. K. Park, S. T. Hong, J. H. Park, K.Y. Park; Y. J. Kwon, H.J. Son, Effect of material locations on properties of friction stir welding joints of dissimilar aluminum alloys, Sci. Technol. Weld. Join. 15 (2010) 331–336.

DOI: https://doi.org/10.1179/136217110x12714217309696

[8] H. J. Aval, S. Serajzadeh and A. H. Kokabi, Experimental and theoretical evaluations of thermal histories and residual stresses in dissimilar friction stir welding of AA5086-AA6061, Int. J. Adv. Manuf. Technol. 61 (2012) 149–160.

DOI: https://doi.org/10.1007/s00170-011-3713-8

[9] C. Sharma, D. K. Dwivedi, P. Kumar, Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of AA7039 aluminum alloy Mater. Des. 36 (2012) 379-390.

DOI: https://doi.org/10.1016/j.matdes.2011.10.054

[10] P. Cavaliere, A. De Santis, F. Panella, A. Squillace, Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082–AA2024 joints produced by friction stir welding, Mater. Des. 30 (2009) 609.

DOI: https://doi.org/10.1016/j.matdes.2008.05.044

[11] N. Rajamanickam, V. Balusamy, G. Madhusudhanna Reddy, K. Natarajan, Effect of process parameters on thermal history and mechanical properties of friction stir welds, Mater. Des. 30 (2009)2726.

DOI: https://doi.org/10.1016/j.matdes.2008.09.035

[12] ASTM E8 M-04, Standard test method for tension testing of metallic materials, ASTM International (2006).

[13] X. K. Zhu, Y. J. Chao, Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel, J. Mater. Process. Technol. 146 (2004) 263-272.

DOI: https://doi.org/10.1016/j.jmatprotec.2003.10.025