Measurement and Simulation of Transient Phenomena in Metal Hydride Bed


Article Preview

The article analyses the measurement with increased absorption kinetics of hydrogen into the La0.85Ce0.15Ni5 alloy. Within a time interval of 180 s an amount of 0.142 kg (1.58 m3) of hydrogen was absorbed into 56 kg of alloy. The process of absorption was accompanied by an increased temperature of the bed. Therefore it was simultaneously cooled by a cooler using Peltier elements. The numerical calculation of non-stationary heat transfer within the bed was performed with a known amount of heat generated in the bed, known temperatures and flow rates. Simulation results allow us to determine temperature time paths at key points of the bed and give insight on the transient phenomena which occurs in the extreme load of the metal hydride (MH) bed. This allows establishing safe limits for the absorption of hydrogen into a particular alloy.



Edited by:

František Trebuňa




T. Brestovič et al., "Measurement and Simulation of Transient Phenomena in Metal Hydride Bed", Applied Mechanics and Materials, Vol. 816, pp. 204-212, 2015

Online since:

November 2015




* - Corresponding Author

[1] Ha M. Y., Kim I. K., Song H. D., Sung S., Lee D. H. A numerical study of thermo-fluid phenomena in metal hydride beds in the hydriding process, Int J Heat and Mass Transfer 2004, 47, pp.2901-2912.


[2] U.S. Department of energy. Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles, Technical Plan – Storage, (2012).

[3] N. Jasminská, T. Brestovič, M. Puškár, R. Grega, J. Rajzinger, J. Korba, Evaluation of hydrogen storage capacities on individual adsorbents, Measurement 2014,. 56, p.219–230.


[4] F. Trebuňa, F. Šimčák, J. Bocko, Failure analysis of storage tank, Engineering Failure Analysis. Vol. 16, no. 1, 2009, pp.26-38.


[5] F. Trebuňa, F. Šimčák, J. Bocko, P. Trebuňa, Failure analysis of mechanical elements in steelworks equipment by methods of experimental mechanics, Engineering Failure Analysis. Vol. 17, no. 4, 2010, pp.787-801.


[6] P. Mlynár, M. Masaryk, Optimalization of absortioption cooling unit, Gépeszet 2012, 8th International conference of Mechanical Engineering, BME Budapest, pp.361-365.

[7] J. Rajzinger, Calculation of maximum water content in various natural gases by using modified Peng-Robinson equation of state, Communications, 14, 4A (2012), pp.29-35.

[8] Z. Michalec, B. Taraba, M. Bojko, M. Kozubková, CFD modelling of the low-temperature oxidation of coal. Archivum Combustions, Vol. 30, No. 3 2010, pp.133-144.

[9] R. Pyszko, M. Příhoda, M. Velička, Method for determining the thermal boundary condition in the CC mould for numeric models, 2010. p.7.

[10] R. Nagy, D. Košičanová, Indoor Envirinment, Air Quality, Ventilation Rates - Numerical CFD Simulations, Calculations and Measuring Apparatus Applications, Czasopismo Techniczne. Vol. 109, no. 3, 2012, pp.281-295.

[11] M. Bojko et al, Characteristics of a mathematical model of the spiral heat exchanger using CFD ANSYS Fluent, Liberec, 2011. pp.17-19.

[12] A. Kapjor, J. Jandačka, M. Malcho, Š. Papučík, Intensification of Heat Transport from the Floor Convector at Given Geometry and the Way of Use, 2010 pp.101-104.

[13] T. Brestovič, N. Jasminská, M. Čarnogurská, M. Puškár, M. Kelemen, M. Fiľo, Measuring of thermal characteristics for Peltier thermopile using calorimetric method, Measurement 2014, 53, pp.40-48.


[14] P. Purcz, Communication complexity and speed-up in the explicit difference method, Parallel Process, 16 (3), 2006, p.313–321.


[15] F. Vranay, Hydraulické súvislosti pri využití jestvujúcich vykurovacích rozvodov pre chladenie, Vykurovanie 2012, Bratislava SSTP, pp.499-503.