Modeling and Simulation of Metal Forming Processes by XFEM

Abstract:

Article Preview

In this work, 2-D/3-D forming problems (extrusion and deep drawing) are numerically simulated by extended finite element method (XFEM). The updated Lagrangian formulation is used to model the large deformation. The von-Mises yield criterion is used to model the elasto-plastic behavior assuming isotropic hardening. Penalty approach is employed to impose the contact constraints and non–penetration condition at the material interfaces. The level set approach is used for locating the material interfaces. The numerical simulations of two forming problems are presented using developed nonlinear XFEM code.

Info:

Periodical:

Edited by:

Christopher Chao, Matthew Parkinson

Pages:

41-45

Citation:

A. S. Shedbale et al., "Modeling and Simulation of Metal Forming Processes by XFEM", Applied Mechanics and Materials, Vol. 829, pp. 41-45, 2016

Online since:

March 2016

Export:

Price:

$38.00

* - Corresponding Author

[1] N. Sukumar, D.L. Chopp, N. Moes, T. Belytschko, Modeling holes and inclusions by level sets in the extended finite element method, Comp. Meth. Appl. Mech. Eng. 190 (2001) 6183–6200.

DOI: https://doi.org/10.1016/s0045-7825(01)00215-8

[2] I.V. Singh, B.K. Mishra, S. Bhattacharya, XFEM Simulation of Cracks, Holes and Inclusions in Functionally Graded Materials, Int. J. Mech. Mater. Design, 7 (2011) 199-218.

DOI: https://doi.org/10.1007/s10999-011-9159-1

[3] S. Bhattacharya, I.V. Singh, B.K. Mishra, Mixed-Mode Fatigue Crack Growth Analysis of Functionally Graded materials by XFEM, Int. J. Fract., 183 (2013) 81-97.

DOI: https://doi.org/10.1007/s10704-013-9877-5

[4] H. Pathak, A. Singh, I.V. Singh, Fatigue Crack Growth Simulations of 3-D Problems Using XFEM, Int. J. Mech. Sci. , 76 (2013) 112-131.

DOI: https://doi.org/10.1016/j.ijmecsci.2013.09.001

[5] A.S. Shedbale, I.V. Singh B.K. Mishra, Nonlinear simulation of an embedded crack in the presence of holes and inclusions by XFEM, Procedia Eng. 64 (2013) 642–651.

DOI: https://doi.org/10.1016/j.proeng.2013.09.139

[6] S. Kumar, I.V. Singh B.K. Mishra, A homogenized XFEM approach to simulate fatigue crack growth problems, Comp. Struct. 150 (2015) 1–22.

DOI: https://doi.org/10.1016/j.compstruc.2014.12.008

[7] A.R. Khoei, A. Shamloo, A.R. Azami, Extended finite element method in plasticity forming of powder compaction with contact friction, Int. J. Solids Struct. 43 (2006) 5421–5448.

DOI: https://doi.org/10.1016/j.ijsolstr.2005.11.008

[8] I. Nistor, M.L.E. Guiton, P. Massin, N. Moës, S. Geniaut, An XFEM approach for large sliding contact along discontinuities, Int. J. Numer. Meth. Eng. 78 (2009) 1407–1435.

DOI: https://doi.org/10.1002/nme.2532

[9] P. Wriggers, Computational Contact Mechanics, Second ed., John Wiley, New York, (2002).

[10] G. Zavarise, L.D. Lorenzis, The node-to-segment algorithm for 2-D frictional less contact: classical formulation and special cases, Comp. Meth. Appl. Mech. Eng. 198 (2009) 3428–3451.

[11] A.R. Khoei, S.O.R. Biabanaki, S.M. Parvaneh, 3-D dynamic modeling of powder forming process via a simple and efficient node-to-surface contact algorithm, Appl. Math. Model. 37 (2013) 443–462.

DOI: https://doi.org/10.1016/j.apm.2012.03.010

[12] I.V. Singh B.K. Mishra, S. Bhattacharya, R.U. Patil, The numerical simulation of fatigue crack growth using extended finite element method, Int. J. Fatigue. 36 (2012) 109–119.

DOI: https://doi.org/10.1016/j.ijfatigue.2011.08.010

[13] K. Sharma, I.V. Singh, B.K. Mishra, A.S. Shedbale, The effect of inhomogeneities on edge crack: A numerical study using XFEM, Int. J. Comp. Meth. Eng. Sci. Mech. 14 (2013) 505–523.

DOI: https://doi.org/10.1080/15502287.2013.820227

[14] D.R.J. Owen, E. Hinton, Finite Elements in Plasticity: Theory and Practice, Pineridge Press Ltd, Swansea, U. K., (1980).

[15] J.N. Reddy, An Introduction to Nonlinear Finite Element Analysis, OUP Oxford, (2004).

[16] A.S. Shedbale, I.V. Singh, B.K. Mishra, K. Sharma, Evaluation of mechanical properties using spherical ball indentation and coupled FE–EFG approach, Mech. Adv. Mater. Struc. DOI: 10. 1080/15376494. 2015. 1029171.

Fetching data from Crossref.
This may take some time to load.