Adaptive Optimal Multiple Object Tracking Based on Global Cameras for a Decentralized Autonomous Transport System

Abstract:

Article Preview

In order to adapt to the mass customization, a new concept of material flow systems that can handle product varieties is needed. Firstly, this paper analyzes the current problems and future requirements of the structure of a new production system. Then, in response to current limitations, the corresponding concept of a decentralized transport system for low payloads with high flexibility is introduced. For this purpose, automated guided vehicles (AGVs) as an effective means of transport are used. The key issues of the autonomous transport system are then researched, and an improvement of the multiple object tracking algorithm is proposed. We demonstrate the performance of our proposed system with a designed workspace. Based on the demonstration and experiment, results show that the proposed concept and the tracking algorithm are appropriate and robust to be implemented in real-time applications.

Info:

Periodical:

Edited by:

Thorsten Schüppstuhl, Kirsten Tracht, Jörg Franke

Pages:

1-7

Citation:

X. Zhang et al., "Adaptive Optimal Multiple Object Tracking Based on Global Cameras for a Decentralized Autonomous Transport System", Applied Mechanics and Materials, Vol. 840, pp. 1-7, 2016

Online since:

June 2016

Export:

Price:

$41.00

* - Corresponding Author

[1] S.J. Hu, X. Zhu, H. Wang, Y. Koren, Product variety and manufacturing complexity in assembly systems and supply chains, CIRP Ann. Manuf. Technol. 57 (2008) 45–48.

DOI: https://doi.org/10.1016/j.cirp.2008.03.138

[2] W. Eversheim, Organisation in der Produktionstechnik Grundlagen, 3rd ed., VDI-Verl., Düsseldorf, (1996).

[3] H. Martin, Transport- und Lagerlogistik: Planung, Struktur, Steuerung und Kosten von Systemen der Intralogistik, 9th ed., Wiesbaden: Imprint: Springer Vieweg, (2014).

[4] K. -H. Wehking, C. Vorwerk, Technische Basiskomponenten der Intralogistik im Wandel- Zukünftig: Stückgutförderung mit Fahrzeugschwarm, Hebezeuge-Fördermittel, 48(5) (2008) 242–245.

[5] K. Feldmann, M. Weber, W. Wolf, Decentralized structure recognition and automated network configuration for Plug&Produce-able modular assembly systems, Production Engineering - Annals of the German Academic Society for Production Engineering (WGP), (2006).

[6] Information on https: /www. ifl. kit. edu/projekte_1312. php.

[7] Information on http: /www. goetting-agv. com/components/43600.

[8] F. Lütteke, Vielseitiges autonomes Transportsystem basierend auf Weltmodellerstellung mittels Datenfusion von Deckenkameras und Fahrzeugsensoren, Diss., FAU Erlangen-Nürnberg, Erlangen (2014).

[9] T. Rennekamp, K. Homeier, T. Kroeger, Distributed sensing and prediction of obstacle motions for mobile robot motion planning, IEEE/RSJ Intl. Conf. Intelligent Robots and Systems (2006) 4833-4838.

DOI: https://doi.org/10.1109/iros.2006.282359

[10] X. Zhang, F. Lütteke, C. Ziegler, J. Franke, Self-learning RRT* algorithm for mobile robot motion planning in complex environments, Proc. Of the 13th Intl. Conf. Intelligent Autonomous Systems, Springer, (2015) 302: 57.

DOI: https://doi.org/10.1007/978-3-319-08338-4_5

[11] W. Luo, X. Zhao, T. -K. Kim, Multiple object tracking: A review, arXiv preprint arXiv: 1409. 7618 (2014).

[12] J. Munkres, Algorithms for the assignment and transportation problems, Journal of the Society for Industrial and Applied Mathematics, 5(1): 32–38 (1957).

[13] J.F. Henriques, R. Caseiro, J. Batista, Globally optimal solution to multi-object tracking with merged measurements, IEEE Intl. Conf. on Computer Vision (ICCV), (2011) 2470-2477.

DOI: https://doi.org/10.1109/iccv.2011.6126532

[14] M.D. Breitenstein, F. Reichlin, et al, Robust tracking-by-detection using a detector confidence particle filter, IEEE Intl. Conf. on Computer Vision (ICCV), (2009) 1515-1522.

DOI: https://doi.org/10.1109/iccv.2009.5459278

[15] M. Betke, D.E. Hirsh, et al, Tracking large variable numbers of objects in clutter, IEEE Conf. on Computer Vision and Pattern Recognition, (2007) 1-8.

DOI: https://doi.org/10.1109/cvpr.2007.382994

[16] Assign detections to tracks for multiobject tracking, MathWorks, retrieved from http: /de. mathworks. com/help/vision/ref/assigndetectionstotracks. html.

[17] F. Luetteke, X. Zhang, J. Franke, Implementation of the Hungarian Method for object tracking on a camera monitored transportation system, Proc. of ROBOTIK 2012; 7th German Conf. on Robotics VDE, (2012) 1-6.