The Least Energy Demand as Crossbench Reference for the Evaluation and Equation of the Relative Energy Efficiency of Production Processes

Abstract:

Article Preview

This paper presents the Least Energy Demand as a comprehensive reference value to evaluate energy efficiency. An objective evaluation and calculation of the energy efficiency of production processes represents a substantial challenge with regard to the state of the art. The reason for this is the lack of appropriate reference values. A comprehensive comparison of the energy efficiency is not possible without consistent reference values. However, this comparison is essential to reveal the actual energy savings potential of production processes and to derive actions on its basis. First, in order to calculate such a reference value for different production processes, the basics to describe a closed system energetically, are defined. Initially, several energy states and the various energy terms were defined to describe a production process as an energetic system. In a second step, the model for the activation energy based on chemical laws is introduced and its basic idea is transferred to the operations of the production processes of DIN 8580. For this purpose, appropriate general conditions have to be defined in order to be able to derive, finally, the existence of a Least Energy Demand for the execution of a production process according to DIN 8580. In conclusion, the term Least System Energy Change Demand is introduced and is defined within the conceptualized model for the activation energy. It forms the basis of independent reference values for the evaluation and calculation of the energy efficiency of production processes.

Info:

Periodical:

Edited by:

Jörg Franke and Sven Kreitlein

Pages:

31-38

Citation:

S. Kreitlein et al., "The Least Energy Demand as Crossbench Reference for the Evaluation and Equation of the Relative Energy Efficiency of Production Processes", Applied Mechanics and Materials, Vol. 856, pp. 31-38, 2017

Online since:

November 2016

Export:

Price:

$41.00

* - Corresponding Author

[1] S. Kreitlein, N. Eder, A. Syed-Khaja, J. Franke: Comprehensive Assessment of Energy Efficiency within the Production Process, WASET, 13th International Conference on Sustainable Manufacturing, Zurich (2015).

[2] S. Kreitlein, A. Meyer, J. Franke: E|Benchmark - a pioneering method for process planning and sustainable manufacturing strategies for processes in the electric drives production, IEEE, E|DPC Electric Drives Production Conference, Nuremberg, (2014).

DOI: https://doi.org/10.1109/edpc.2014.6984425

[3] S. Kreitlein, S. Spreng, J. Franke: E|benchmark - a pioneering method for process planning and sustainable manufacturing strategies, CIRP, 12th GSCM, Global Conference on Sustainable Manufacturing, Malaysia, (2014).

DOI: https://doi.org/10.1016/j.procir.2014.07.070

[4] M. Schröter, U. Weißfloch, D. Buschak: Energieeffizienz in der Produktion – Wunsch oder Wirklichkeit?: Energieeinsparpotenziale und Verbreitungsgrad energieeffizienter Techniken. Fraunhofer-Institut für Systemtechnik und Innovationsforschung, Mitteilungen aus der ISI-Erhebung 51, November (2009).

[5] Statistisches Bundesamt (Destatis): Daten zur Energiepreisentwicklung: Lange Reihen von Januar 2000 bis November 2014. Wiesbaden, Dec. (2014).

[6] A. Syska: Produktionsmanagement. Das A-Z wichtiger Methoden und Konzepte für die Produktion von heute. Gabler, Wiesbaden, (2006).

[7] S. Kreitlein, A. Höft, S. Schwender, J. Franke: Green Factories Bavaria: A Network of Distributed Learning Factories for Energy Efficient Production. In: 5th Conference on Learning Factories 32(0), S. 58-63, (2015).

DOI: https://doi.org/10.1016/j.procir.2015.02.219

[8] S. Kreitlein, I. Kupfer, M. Mühlbauer, J. Franke: The Relative Energy Efficiency as Standard for Evaluating the Energy Efficiency of Production Processes Based on the Least Energy Demand. 2nd Green Factory Bavaria Colloquium. Nürnberg, (2015).

DOI: https://doi.org/10.4028/www.scientific.net/amm.805.11

[9] A. Leipertz: Technische Thermodynamik. ESYTEC Energie- und Systemtechnik GmbH, Erlangen (2011).

[10] V. Biese, U. Bleyer, M. Bosse: Chemie, Grundlagen, Anwendungen, Versuche. 2. Aufl., Vieweg Verlag, Braunschweig, Wiesbaden, (1990).

[11] K. Stephan, F. Mayinger: Thermodynamik, Grundlagen und technische An-wendungen. 19. Aufl. Berlin, Heidelberg: Springer; (2013).

[12] G. Markl: Minerale und Gesteine. Mineralogie - Petrologie – Geochemie. 3. Aufl. Berlin, Heidelberg: Springer Spektrum; (2015).

[13] A. Pfennig: Thermodynamik der Gemische. Springer Verlag, Berlin, Heidelberg, (2004).

[14] H. D. Baehr, S. Kabelac: Thermodynamik, Grundlagen und technische An-wendungen. 15. Aufl., Springer Vieweg Verlag, Berlin Heidelberg, (2012).

[15] K. Lucas: Thermodynamik, Die Grundgesetze der Energie- und Stoffumwand-lungen. 6. Aufl., Springer Verlag, Berlin, (2007).

[16] E. Hahne: Technische Thermodynamik, Einführung und Anwendung. 5. Aufl., Oldenbourg Verlag, München, (2010).

[17] T. L. Brown, B. E. Bursten, H. E. Lemay: Chemie, Die zentrale Wissenschaft. 10. Aufl., Pearson Studium, München, (2007).

[18] P. Kurzweil, P. Scheipers: Chemie, Grundlagen, Aufbauwissen, Anwendun-gen und Experimente. 9. Aufl., Vieweg + Teubner Verlag, Wiesbaden, (2012).

[19] F. Pfeiffer: Chemie kompakt Wissen. 1. Aufl., Klett Verlag, Stuttgart, (2013).