Lean Data Services: Detection of Operating States in Energy Profiles of Intralogistics Systems by Using Big Data Analytics


Article Preview

Due to the rising energy costs and the increasing competition on the market the improvement of the energy efficiency in production systems can be a great chance for companies to gain an advantage compared to their competitors. Therefore, the transparency of the energy consumption of the several processes of such systems has to be known in detail. In this paper a method for the detection of operating states in production systems, based on big data analysis is introduced. The developed algorithm automatically detects different operating states in the current profile and improves his accuracy the longer it is used. To evaluate the developed data analysis algorithm, a defined process with a conveyor belt was considered and measured several times. The algorithm defines clusters from the measurements and identifies classes for the several operating states. With the naive Bayes classifier it is possible to categorize the clusters more fine-grained and faster than with a correlation function. An advantage of the method is that each new classified instance is taken into account for future unclassified instances. So it is possible to integrate a continuous learning process in production processes and to consider a slowly drift of states. Also, the subsequent addition of classes and attributes that are represented in this work by clusters, is possible at any time.



Edited by:

Jörg Franke and Sven Kreitlein




C. Oette et al., "Lean Data Services: Detection of Operating States in Energy Profiles of Intralogistics Systems by Using Big Data Analytics", Applied Mechanics and Materials, Vol. 856, pp. 73-81, 2017

Online since:

November 2016




* - Corresponding Author

[1] H. Borcherding, M. Köster, S. Windmann, M. Ehlich, O. Niggemann, Energieeffizienz in der Intralogistik, wt Werkstattstechnik online, 416-422, Springer-VDI-Verlag, Düsseldorf (2013).

[2] G. Volz, Informationsblätter Fördertechnik: Optimierung und Modernisierung von fördertechnischen Anlagen, Deutsche Energie-Agentur GmbH (dena), Berlin (2015).

[3] Statistisches Bundesamt. Umsatz der deutschen Fördertechnik in den Jahren 2005 bis 2015, 2016, http: /de. statista. com/statistik/daten/studie/235983/umfrage/umsatz-der-foerdertechnik-in-deutschland (access on 24th June 2016).

[4] Data Analysis – Pearson´s Correlation Coefficient, University of the West of England, Bristol 2016, http: /learntech. uwe. ac. uk/da/Default. aspx?pageid=1442 (access on 1th July 2016).

[5] W. Polasek, EDA Explorative Datenanalyse: Einführung in die deskriptive Statistik, Springer-Verlag Berlin Heidelberg GmbH, (1994).

DOI: https://doi.org/10.1007/978-3-642-57889-2_2

[6] Mertins, A.: Signaltheorie: Grundlagen der Signalbeschreibung, Filterbänke, Wavelets, Zeit-Frequenz-Analyse, Parameter- und Signalschätzung, 3rd ed., Wiesbaden: Springer Vieweg, (2013).

[7] Universität Duisburg-Essen, Anwendungen der Wavelet-Transformation in Übertragungssystemen. http: /duepublico. uni-duisburg-essen. de/servlets/DerivateServlet/Derivate-5014/kapitel3. pdf. (access on: 2016-06-25).

[8] J. Morlet, Sampling theory and wave propagation: Spinger, (1983).

[9] J. Morlet, G. Arens, I. Fourgeau, and D. Giard, Wave propagation and sampling theory, (1982).

[10] A. Akansu, W. Serdijn, and I. Selesnick: Wavelet Transforms in Signal Processing: A Review of Emerging Applications, (en), Physical Communication, no. vol. 3, pp. pp.1-18, (2010).

[11] A. N. Akansu and R. A. Haddad: Multiresolution signal decomposition: Transforms, subbands, and wavelets, 2nd ed. San Diego: Academic Press, (2001).

[12] A. N. Akansu and M. J. Medley: Wavelet, subband and block transforms in communications and multimedia. New York, London: Springer, (2011).

[13] A. N. Akansu, M. V. Tazebay, M. J. Medley, and P. K.: Wavelet and subband transforms: fundamentals and communication applications, (en), Communications Magazine, IEEE, vol. 35, no. 12, p.104–115, http: /ieeexplore. ieee. org/stamp/stamp. jsp?arnumber=642839, (1997).

DOI: https://doi.org/10.1109/35.642839

[14] A. N. Akansu and M. J. T. Smith: Subband and wavelet transforms: Design and applications. Boston: Kluwer Academic Publishers, (1996).

[15] R. Nakayama, Y. Uchiyama, K. Yamamoto, R. Watanabe, and K. Namba: Computer-aided diagnosis scheme using a filter bank for detection of microcalcification clusters in mammograms, IEEE Trans Biomed Eng, vol. 53, no. 2, pp.273-283, (2006).

DOI: https://doi.org/10.1109/tbme.2005.862536

[16] B. Girod, R. Rabenstein, A. Stenger: Einführung in die Systemtheorie. 4. Auflage. Teubner, Wiesbaden (2007).

[17] Bayes, Thomas, Price, Richard, Canton, John: An essay towards solving a problem in the doctrine of chances. C. Davis, Printer to the Royal Society of London, 1763.

DOI: https://doi.org/10.1098/rstl.1763.0053

[18] Duda, Richard O., Hart, Peter E., Stork, David G.: Pattern classification. 2. ed. New York, NY, Wiley, 2001 (A Wiley-Interscience publication) ISBN 9780471703501.

[19] Mitchell, Tom M.: Machine learning. International ed. [Reprint. ]. New York, NY, McGraw-Hill, 2010 (McGraw-Hill series in computer science) ISBN 0070428077.

[20] Koch, Karl-Rudolf: Einführung in die Bayes-Statistik. Berlin, Heidelberg, s. l., Springer Berlin Heidelberg, 2000, ISBN 9783642630781.

[21] Cox, R. T.: Probability, frequency and reasonable expectation. American Journal of Physics, (1946).

[22] Rumpf, Christof: Automatische Klassifikation mit Maximum-Entropie-Modellen und Bootstrapping: Anwendung bei der Bestimmung von Begriffstypen und der Wortsinn-Disambiguierung. http: /slideplayer. org/slide/643487/#. Version: 2008, (access on: 2016-06-29).

[23] Demberg, V.: Mathematische Grundlagen III - Maschinelles Lernen I: Klassifikation mit Naive Bayes. http: /www. coli. uni-saarland. de/courses/mathe3/SS12/Vorlesungen/naive_bayes. pdf, Version: (2012).

[24] Lösch, Martin: Einführung: BayesschesLernen. http: /his. anthropomatik. kit. edu/users/loesch/LaborWissRepr-DHBW-KA-2011WS/#Anchor_new5. Version: 2015, (access on: 2016-06-28).