Gas Turbine Using In Situ Combustion

Abstract:

Article Preview

The paper presents the background and objectives of a new research project carried out in the field of in situ gas turbine combustion. An extensive literature review highlighting the state-of-the-art in the field is presented. Several possible solutions for the turbine burner are also included. The objectives and the expected original contributions of the projects conclude the paper.

Info:

Periodical:

Edited by:

Adrian Olaru

Pages:

20-28

Citation:

C. F. Cuciumita et al., "Gas Turbine Using In Situ Combustion", Applied Mechanics and Materials, Vol. 859, pp. 20-28, 2017

Online since:

December 2016

Export:

Price:

$38.00

* - Corresponding Author

[1] Turns S.R. An Introduction to Combustion. Concepts and Applications. McGraw-Hill, (2000).

[2] Krase W.H. Ericsson Cycle Gas Turbine Powerplants, Technical Report Rand Corporation, R-2327-DOE, (1979).

[3] Popescu J.A., Porumbel I., Vilag V.A., Cuciumita C.F. Thermodynamic Cycle Analysis for Overall Efficiency Improvement and Temperature Reduction in Gas Turbines, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 9 (4), (2015).

[4] Amend E.W., Petrick M., Pierson E.S. Liquid-Metal MHD for Central Stations, Proceedings of the American Power Conference, 35, (1973).

[5] Elliot D.G. Two-Fluid Magneto-Hydrodynamic Cycle for Nuclear-Electric Power Generation, ARS Journal, 32: 924-924, (1963).

[6] Sirignano W.A., Liu F. Performance Increases for Gas Turbine Engines through Combustion Inside the Turbine, Journal of Propulsion and Power, 144: 111-118, (1999).

DOI: https://doi.org/10.2514/2.5398

[7] Liu F., Sirignano W.A. Turbojet and Turbofan Engine Performance Increases through Turbine Burners, Journal of Propulsion and Power, 17: 698-705, (2001).

DOI: https://doi.org/10.2514/2.5797

[8] SirignanoW.A., Dunn-Rankin D., Liu F., Colcord B., Puranam S. Turbine Burners: Flameholding in Accelerating Flow, AIAA 2009 - 5410, 45th AIAA / ASME / SAE / ASEE Joint Propulsion Conference and Exhibit, Denver, Colorado, USA, 2-5 August (2009).

DOI: https://doi.org/10.2514/6.2009-5410

[9] Marble F.E., Adamson Jr. T.C. Ignition and Combustion in a Laminar Mixing Zone, Jet Propulsion, 24: 85, (1954).

[10] Emmons H.W. Thin Film Combustion of Liquid Fuel, Zeitschrift für Angewandte Mathematik und Mechanik, 36: 60, (1956).

[11] Chang P.M. Chemically Reacting Nonequilibrium Boundary Layers, Advances in Heat Transfer, editors J.P. Hartnett and T.F. Irvine Jr., Academic Press, New York, pp.109-270, (1965).

DOI: https://doi.org/10.1016/s0065-2717(08)70262-4

[12] Sharma O.P., Sirignano W.A., On the Ignition of a Premixed Fuel by a Hot Projectile, Combustion Science and Technology, 1: 481-494, (1970).

DOI: https://doi.org/10.1080/00102206908952228

[13] Patankar S.V., Spalding D.B. Heat and Mass Transfer in Boundary Layers, Intertext, London, UK, (1970).

[14] Givi P., Ramos J.I., Sirignano W.A. Probability Density Function Calculation in Turbulent Chemically Reacting Round Jets, Mixing Layers and One-dimensional Reactors, Journal of Non-Equilibrium Thermodynamics, 10: 75-104, (1985).

DOI: https://doi.org/10.1515/jnet.1985.10.2.75

[15] Buckmaster J., Jackson T.L., Kumar A. Combustion in High-Speed Flows, Kluwer Academic, Dordrecht, The Netherlands. (1994).

[16] Grosch C.E., Jackson T.L. Ignition and Structure of a Laminar Diffusion Flame in a Compressible Mixing Layer with Finite Rate Chemistry, Physics of Fluids A, 3: 3087-3097, (1991).

DOI: https://doi.org/10.1063/1.857853

[17] Jackson T.L., Hussaini M.Y., An Asymptotic Analysis of Supersonic Reacting Mixing Layers, Combustion Science and Technology, 57: 129, (1988).

DOI: https://doi.org/10.1080/00102208808923948

[18] Im H.G., Chao B.H., Bechtold J.K., Law C.K. Analysis of Thermal Ignition in the Supersonic Mixing Layer, AIAA Journal, 32: 341-349, (1994).

DOI: https://doi.org/10.2514/3.11990

[19] Im H.G., Helenbrook B.T., Lee S.R., Law C.K. Ignition in the Supersonic Hydrogen / Air Mixing Layer with Reduced Reaction Mechanisms, Journal of Fluid Mechanics, 322: 275-296, (1996).

DOI: https://doi.org/10.1017/s0022112096002790

[20] Chakraborty D., Upadhyaya H.V.N., Paul P.J., Mukunda H.S. A Thermo-chemical Exploration of a Two-dimensional Reacting Supersonic Mixing Layer, Physics of Fluids, 9 (11): 3513-3522, (1997).

DOI: https://doi.org/10.1063/1.869459

[21] Sirignano W.A., Kim I. Diffusion Flame in a Two-dimensional Accelerating Mixing Layer, Physics of Fluids, 9: 2617-2630, (1997).

DOI: https://doi.org/10.1063/1.869378

[22] Fang X., Liu F., Sirignano W.A. Ignition and Flame Studies for an Accelerating Transonic Mixing Layer, Journal of Propulsion and Power, 17 (5): 1058-1066, (2001).

DOI: https://doi.org/10.2514/2.5844

[23] Mehring C., Liu F., Sirignano W.A. Ignition and Flame Studies for a Turbulent Acceleration Transonic Mixing Layer, 39th Aerospace Sciences Meeting, AIAA-2001-1096, Reno, Nevada, USA, (2001).

DOI: https://doi.org/10.2514/6.2001-190

[24] Cai J., Icoz O., Liu F., Sirignano W.A., Ignition and Flame Studies for Turbulent Transonic Mixing in a Curved Duct Flow, 39th Aerospace Sciences Meeting, AIAA-2001-0189, Reno, Nevada, USA, (2001).

DOI: https://doi.org/10.2514/6.2001-189

[25] Cai J., Icoz O/ , Liu F., Sirignano W.A. Combustion in a Transonic Turbulent Flow with Large Axial and Transverse Pressure Gradients, 18th ICDERS, Seattle, Washington, USA, (2001).

[26] Cheng F., Liu F., Sirignano W.A. Nonpremixed Combustion in an Accelerating Turning, Transonic Flow Undergoing Transition, AIAA Journal, 45: 2935-2946, (2007).

DOI: https://doi.org/10.2514/1.31146

[27] Cheng F., Liu F., Sirignano W.A. Nonpremixed Combustion in an Accelerating Transonic Flow Undergoing Transition, AIAA Journal, 46: 1204-1215, (2008).

DOI: https://doi.org/10.2514/1.35209

[28] Cheng F., Liu F., Sirignano W.A. Reacting Mixing-Layer Computations in a Simulated Turbine Stator Passage, Journal of Propulsion and Power, 25 (2), (2009).

DOI: https://doi.org/10.2514/1.37739

[29] Zelina J., Sturgess G.J., Shouse D.T. The Behaviour of an Ultra-Compact Combustor (UCC) Based on Centrifugally - Enhanced Turbulent Burning Rates, AIAA-2004-3541, (2004).

DOI: https://doi.org/10.2514/6.2004-3541

[30] Quaale R.J., Anthenien R.A., Zelina J., Ehret J. Flow Measurements in a High Swirl Ultra Compact Combustor for Gas Turbine Engines, ISABE 2003-1141, (2003).

[31] Zelina J., Shouse D.T., Hancock R.D. Ultra-Compact Combustors for Advenced Gas Turbine Engines, Proceedings of the ASME Turbo Expo 2004, 2004-GT-53155, (2004).

DOI: https://doi.org/10.1115/gt2004-53155

[32] Zelina J., Sturgess G.J., Mansour A., Hancock R.D. Fuel Injection Design Optimization for an Ultra-Compact Combustor, ISABE 2003-1079, (2003).

[33] Lin K.C., Kirdendall K.A., Kennedy P.J., Jackson T.A. Spray Structures of Aerated Liquid Fuel Jets in Supersonic Crossflows, 35th Joint Propulsion Specialists Meeting, AIAA-99-2374, (1999).

DOI: https://doi.org/10.2514/6.1999-2374

[34] Lin K.C., Kennedy P.J., Jackson T. A Spray Penetration Heights of Angle Injected Aerated Liquid Jets in Supersonic Crossflows, Aerospace Sciences Meeting, AIAA-2000-0194, (2000).

DOI: https://doi.org/10.2514/6.2000-194

[35] Hsu K.Y., Carter C., Crafton J., Gruber M., Donbar J., Mathur T., Schommer D., Terry W., Fuel Distribution About a Cavity Flameholder in Supersonic Flow, 36th Joint Propulsion Specialists Meeting, AIAA-2000-3585, (2000).

DOI: https://doi.org/10.2514/6.2000-3585

[36] Mathur T., Cox-Staufer S., Hsu K.Y., Crafton J., Donbar J., Gruber M., Experimental Assessment of a Fuel Injector for Scramjet Applications, 36th Joint Propulsion Specialists Meeting, AIAA-2000-3703, (2000).

DOI: https://doi.org/10.2514/6.2000-3703

[37] Gruber M., Donbar J., Jackson T., Mathur T., Eklund D., Bilig F. Performance of an Aerodynamic Ramp Fuel Injector in a Scramjet Combustor, 36th Joint Propulsion Specialists Meeting, AIAA-2000-3708, (2000).

DOI: https://doi.org/10.2514/6.2000-3708

[38] Mathur T., Lin K.C., Kennedy P.J., Gruber M., Donbar J., Jackson T., Bilig F. Liquid JP-7 Combustion in a Scramjet Combustor, 36th Joint Propulsion Specialists Meeting, AIAA-2000-3581, (2000).

DOI: https://doi.org/10.2514/6.2000-3581

[39] Yu G., Li J.G., Chang, X.Y., Chen LH., Investigation of Fuel Injection and Flame Stabilization in Liquid Hydrocarbon - Fueled Supersonic Combustion, 37th Joint Propulsion Conference, AIAA-2000-3581, (2000).

DOI: https://doi.org/10.2514/6.2001-3608

[40] Yu G., Li J.G., Chang X.Y., Chen L.H. Sung C.J. Investigation on Combustion Characteristics of Kerosene Hydrogen Dual Fuel in a Supersonic Combustor, 36th Joint Propulsion Specialists Meeting, AIAA-2000-3620, (2000).

DOI: https://doi.org/10.2514/6.2000-3620

[41] Shouse D.T., Hendricks R.C., Burrus D.L., Roquemore W.M., Ryder R.C., Duncan B.S., Liu N.S., Brankovic A., Hendricks J.A., Gallagher J.R. Experimental and Computational Study of Trapped Vortex Combustor Sector Rig with Tri-pass Diffuser, NASA Report, Glenn Research Center, (2004).

DOI: https://doi.org/10.1155/s1023621x0100032x

[42] Lapsa A., Dahm J.A. Experimental Study on the Effects of Large Centrifugal Forces on Step Stabilized Flames, 5th US Combustion Meeting, (2007).

[43] Zelina J., Shouse D.T., Sturgess G.J., Roquemore W.M. Emissions Reduction Technologies for Military Gas Turbine Engines, Journal of Propulsion and Power, 21 (2), (2004).

DOI: https://doi.org/10.2514/1.6528

[44] Bunker R.S. Integration of New Aero-thermal and Combustion Technologies with Long Term Design Philosophies for Gas Turbine Engine, US Ukrainian Workshop on Innovative Combustion and Aerothermal Technologies in Energy and Power Systems, (2001).

[45] Stone C., Menon S. Simulation of Fuel / Air Mixing and Combustion in a Trapped Vortex Combustor, AIAA-2000-0478, 38th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA, (2000).

DOI: https://doi.org/10.2514/6.2000-478

[46] Zelina J. Numerical Studies on Cavity Inside Cavity Supported in Ultra Compact Combustors, Proceedings of the 53rd International Gas Turbine and Aeroengine Congress and Exposition, ASME Turbo Expo, Berlin, Germany, (2008).

[47] Shouse D.T., Zelina J., Hancock R.D. Operability and Efficiency Performance of Ultra-compact, High Gravity (g) Combustor Concepts, 51st International Gas Turbine and Aeroengine Congress and Exposition, ASME Turbo Expo, Barcelona, Spain, (2006).

DOI: https://doi.org/10.1115/gt2006-90119

[48] Lippert T.E., Newby R.A., Bachovchin D.M. Gas Turbine Reheat using In-situ Combustion", Topical Report: Task 4. Conceptual Design and Development Plan., (2004).

DOI: https://doi.org/10.2172/827534

[49] Cizmas, P.G.A., Flitan H., Isvoranu, D.D. Numerical Prediction of Unsteady Blade Loading in a Turbine-Combustor, 8th National Turbine Engine High Fatigue Conference, Monterey, California, 14-16 April (2003).

Fetching data from Crossref.
This may take some time to load.