Confocal Surface Plasmon Embedded Interferometric Microscope: A Brief Review


Article Preview

In this paper, we firstly explain the concept of surface plasmon resonance imaging and a main key issue in the field of localized SPR imaging, which is the trade-off between resolution and sensitivity. We will then explain how V(z) scanning confocal microscope can overcome the trade-off and enable us to make a localized detection of multiple analytes in small quantities. This paper provides a brief review on a chronological development of the confocal surface plasmon embedded interferometric microscope and highlights the key idea behind each developments. Theoretical detection limit of the confocal system is within a single molecule detection regime, where 100kD molecule can be detected with 100μJ of light in the confocal system. We also discuss some key challenges in achieving the theoretical limit, such as, microphonic vibration and slow scanning speed of the system and how to get around these challenges. Lastly, we discuss some possible future developments to improve the system.



Edited by:

Noppakun Sanpo, Jirasak Tharajak and Paisan Kanthang




S. Pechprasarn et al., "Confocal Surface Plasmon Embedded Interferometric Microscope: A Brief Review", Applied Mechanics and Materials, Vol. 866, pp. 365-369, 2017

Online since:

June 2017




* - Corresponding Author

[1] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics, Berlin, (1986).


[2] CB Giebel, S. Herminghaus,M. Riedel, P. Leiderer, U. Weiland, M. Bastmeyer Imaging of Cell/Substrate Contacts of Living Cells with Surface Plasmon Resonance Microscopy, Biophysical Journal 76: 8 , (1999).


[3] MG Somekh, SG Liu, TS Velinov, CW See, High-resolution scanning surface-plasmon microscopy. Applied Optics 39: 6279-87, (2000).


[4] MG Somekh, SG Liu, TS Velinov, CW See, Optical V(z) for high-resolution 2 pi surface plasmon microscopy. Optics Letters 25: 823-5, (2000).


[5] S. Pechprasarn, MG Somekh. Surface plasmon microscopy: resolution, sensitivity and crosstalk. Journal of Microscopy 246: 287-97 (2012).


[6] L. Berguiga, T. Roland, K. Monier, J. Elezgaray, F. Argoul, Amplitude and phase images of cellular structures with a scanning surface plasmon microscope, Optics Express, 19 (7), pp.6571-6586. (2011).


[7] B. Zhang, S. Pechprasarn, M.G. Somekh: Confocal surface plasmon microscopy with pupil function engineering, Optics Express (2012).


[8] B. Zhang, S. Pechprasarn, M.G. Somekh: Surface plasmon microscopic sensing with beam profile modulation, Optics Express (2012).


[9] B. Zhang, S. Pechprasarn, M.G. Somekh: Quantitative plasmonic measurements using embedded phase stepping confocal interferometry, Optics Express (2013).


[10] S. Pechprasarn, MG. Somekh Detection limits of confocal surface plasmon microscopy. Biomedical Optics Express.; 5(6): 1744-1756. doi: 10. 1364/BOE. 5. 001744 (2014).

[11] S. Pechprasarn, B. Zhang, D. Albutt, J. Zhang and MG. Somekh, Ultrastable embedded surface plasmon confocal interferometry. Light Sci Appl 3, e187, doi: 10. 1038/lsa. 2014. 68 (2014).


[12] T WK Chow, S. Pechprasarn, JK. Meng, and Mฌใ. Somekh, Single shot embedded surface plasmon microscopy with vortex illumination, Opt. Express 24, 10797-10805 (2016).


[13] SA. Goorden, Jใ Bertolotti, and AP. Mosk, Superpixel-based spatial amplitude and phase modulation using a digital micromirror device, Opt. Express 22, 17999-18009 (2014).