Comparative Study of Interatomic Interaction Potentials for Describing Indentation into Si Using Molecular Dynamics Simulation

Abstract:

Article Preview

We compare the performance of three interatomic interaction potentials for describing the evolution of plasticity and phase transformations in Si: the well established Stillinger-Weber potential, a recent modification used in the description of Al/Si composites, and a modification of the well known Tersoff potential. We show that the generation of dislocations and the evolution of plasticity are well described by the Stillinger-Weber potential and its modification, while the phase transformation to the high-pressure bct5 modification and the subsequent amorphization are better included in the modified Tersoff potential.

Info:

Periodical:

Edited by:

Jan C. Aurich, Bahram Ravani, Achim Ebert, Bernd Hamann, Ralf Müller, Tarek Zohdi and Benjamin Kirsch

Pages:

3-8

DOI:

10.4028/www.scientific.net/AMM.869.3

Citation:

Z. B. Zhang and H. M. Urbassek, "Comparative Study of Interatomic Interaction Potentials for Describing Indentation into Si Using Molecular Dynamics Simulation", Applied Mechanics and Materials, Vol. 869, pp. 3-8, 2017

Online since:

August 2017

Export:

* - Corresponding Author

[1] I. Szlufarska, Mater. Today 9, 42 (2006).

[2] G. Ziegenhain, H. M. Urbassek, and A. Hartmaier, J. Appl. Phys. 107, 061807 (2010).

[3] Y. Gao, C. J. Ruestes, and H. M. Urbassek, Comput. Mater. Sci. 90, 232 (2014).

[4] Y. Gao, C. J. Ruestes, D. R. Tramontina, and H. M. Urbassek, J. Mech. Phys. Sol. 75, 58 (2015).

[5] I. Alabd Alhafez, C. J. Ruestes, Y. Gao, and H. M. Urbassek, Nanotechnology 27, 045706 (2016).

DOI: 10.1088/0957-4484/27/4/045706

[6] D. E. Kim and S. I. Oh, J. Appl. Phys. 104, 013502 (2008).

[7] Z. Zhang, A. Stukowski, and H. M. Urbassek, Comput. Mater. Sci. 119, 82 (2016).

[8] P. Saidi, T. Frolov, J. J. Hoyt, and M. Asta, Model. Simul. Mater. Sci. Eng. 22, 055010 (2014).

[9] M. I. Mendelev, M. J. Kramer, C. A. Becker, and M. Asta, Philos. Mag. 88, 1723 (2008).

[10] F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985).

[11] D. E. Kim and S. I. Oh, Nanotechnology 17, 2259 (2006).

[12] K. Mylvaganam, L. C. Zhang, P. Eyben, J. Mody, and W. Vandervorst, Nanotechnology 20, 305705 (2009).

[13] S. Goel, X. Luo, A. Agrawal, and R. L. Reuben, Int. J. Mach. Tool. Manu. 88, 131 (2015).

[14] J. Tersoff, Phys. Rev. B 37, 6991 (1988).

[15] T. Kumagai, S. Izumi, S. Hara, and S. Sakai, Comput. Mater. Sci. 39, 457 (2007).

[16] C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, Phys. Rev. B 58, 11085 (1998).

[17] S. Plimpton, J. Comput. Phys. 117, 1 (1995), http: /lammps. sandia. gov.

[18] A. Stukowski, V. V. Bulatov, and A. Arsenlis, Model. Simul. Mater. Sci. Eng. 20, 085007 (2012).

[19] A. Stukowski, Model. Simul. Mater. Sci. Eng. 20, 045021 (2012).

[20] A. Stukowski and A. Arsenlis, Model. Simul. Mater. Sci. Eng. 20, 035012 (2012).

[21] Bhushan and X. Li, J. Mater. Res. 12, 54 (1997).

[22] L. M. Hale, D. -B. Zhang, X. Zhou, J. A. Zimmerman, N. R. Moody, T. Dumitrica, R. Ballarini, and W. W. Gerberich, Comput. Mater. Sci. 54, 280 (2012).

[23] L. Pastewka, A. Klemenz, P. Gumbsch, and M. Moseler, Phys. Rev. B 87, 205410 (2013).

[24] J. Godet, L. Pizzagalli, S. Brochard, and P. Beauchamp, J. Phys.: Condens. Matter 15, 6943 (2003).

[25] L. L. Boyer, E. Kaxiras, J. L. Feldman, J. Q. Broughton, and M. J. Mehl, Phys. Rev. Lett. 67, 715 (1991).

In order to see related information, you need to Login.