Coupled Thermal and Fluid Mechanical Modeling of a High Speed Motor Spindle

Abstract:

Article Preview

The objective of this survey is to evolve a better understanding of the complex thermal interactions inside a motor spindle. Therefore, the thermal behavior is investigated based on a simulation model and experiments. In contrast to existing simulation models, which either performed a complex thermal examination or an elaborate flow-mechanical analysis, a thermal (Finite Element Method) and fluid mechanical (Computational Fluid Dynamics) coupled simulation model was developed. Based on a comparative analysis, the usability of the currently available boundary conditions is scrutinized.

Info:

Periodical:

Edited by:

Jörg Franke, Sven Kreitlein, Gunther Reinhart, Christian Gebbe, Rolf Steinhilper and Johannes Böhner

Pages:

161-168

Citation:

L. Koch et al., "Coupled Thermal and Fluid Mechanical Modeling of a High Speed Motor Spindle", Applied Mechanics and Materials, Vol. 871, pp. 161-168, 2017

Online since:

October 2017

Export:

Price:

$38.00

* - Corresponding Author

[1] E. Abele et al., Machine tool spindle units, in: CIRP Annals - Manufacturing Technology 59 (2010), pp.781-802.

DOI: https://doi.org/10.1016/j.cirp.2010.05.002

[2] J.F. Tu, B. Bossmanns, A thermal model for high speed motorized spindles, International Journal of Machine Tools & Manufacture 39 (1999), pp.1345-1366.

DOI: https://doi.org/10.1016/s0890-6955(99)00005-x

[3] K. Gebert, Ein Beitrag zur thermischen Modellbildung von schnelldrehenden Motorspindeln, Shaker Verlag, Aachen, (1997).

[4] J. Findeklee, Steigerung der Genauigkeit von HSC-Fräsmaschinen durch Kompensation axialer Verlagerungen bei Hochfrequenzspindeln, Shaker Verlag, Aachen, (2000).

[5] D. Chen et al., Thermal error of a hydrostatic spindle, Precision Engineering 35 (2011), pp.512-520.

[6] A. Zahedi, M.R. Movahhedy, Thermo-mechanical modeling of high speed spindles, Scientia Iranica 19 (2012), pp.282-293.

DOI: https://doi.org/10.1016/j.scient.2012.01.004

[7] E. Uhlmann, J. Hu, Thermal modelling of a high speed motor spindle, Procedia CIRP 1 (2012), pp.313-318.

DOI: https://doi.org/10.1016/j.procir.2012.04.056

[8] C. Zhao, X. Guan, Thermal Analysis and Experimental Study on the Spindle of the High-Speed Machining Center, AASRI Procedia 1 (2012), pp.207-212.

DOI: https://doi.org/10.1016/j.aasri.2012.06.032

[9] C. Ma et al., Simulation and experimental study on the thermally induced deformations of highspeed spindle system, Applied Thermal Engineering 86 (2015), pp.251-268.

[10] C.H. Chien, J.Y. Jang, 3-D numerical and experimental analysis of a builtin motorized highspeed spindle with helical water cooling channel, Applied Thermal Engineering 28 (2008), pp.2327-2336.

DOI: https://doi.org/10.1016/j.applthermaleng.2008.01.015

[11] J. Weber, J. Weber, Thermo-energetic analysis and simulation of the fluidic cooling system of motorized high-speed spindles, Scandinavian International Conference on Fluid Power 13 (2013).

DOI: https://doi.org/10.3384/ecp1392a14

[12] C. Xia et al., Conjugate heat transfer in fractal tree-like channels network heat sink for high-speed motorized spindle cooling, Applied Thermal Engineering 90 (2015), pp.1032-1042.

DOI: https://doi.org/10.1016/j.applthermaleng.2015.07.024

[13] Y.H. Huang et al., An Experimental and Numerical Study of the Thermal Issues of a High-speed Built-in Motor Spindle, Smart Science 4 (2016), pp.160-166.

[14] D. Schröder, Elektrische Antriebe - Grundlagen, fourth ed., Springer, Berlin Heidelberg, (2009).

[15] R. Richter, Elektrische Maschinen - Band 1: Allgemeine Berechnungselemente, third ed., Birkhäuser-Verlag, Basel, (1967).

[16] J. Kempkes et al., Elektrotechnik und Elektronik für Maschinenbauer, second ed., Springer, Berlin Heidelberg, (2012).

[17] R. Fischer, Elektrische Maschinen, second ed., Springer, Berlin Heidelberg, (2012).

[18] A. Palmgren, Grundlagen der Wälzlagertechnik, Franckh'sche Verlagshandlung, Stuttgart, (1964).

[19] T. A. Harris, N. K. Michael, Rolling Bearing Analysis: Advanced Concepts of Bearing Technology, fifth ed., Taylor & Francis Group LLC, Boca Raton, (2007).

[20] T. A. Harris, Rolling Bearing Analysis, forth ed., John Wiley & Sons Inc., New York, (2001).

[21] R. Anderl, P. Binde, Simulationen mit NX - Kinematik, FEM, CFD, EM und Datenmanagement mit zahlreichen Beispielen für NX 9, third ed., Carl Hanser Verlag, München, (2014).

DOI: https://doi.org/10.3139/9783446439528.001

[22] S.W. Churchill, H.H. Chu, Correlating Equations for Laminar and Turbulent Free Convection from a Vertical Plate, International Journal of Heat and Mass Transfer 18 (1975), pp.1323-1329.

DOI: https://doi.org/10.1016/0017-9310(75)90243-4

[23] J.P. Hartnett, Heat Transfer From a Nonisothermal Disk Rotating in Still Air, Journal of Applied Mechanics 12 (1959), pp.672-673.

[24] D. Dropkin, A. Carmi, Natural-Convection Heat Transfer Form a Horizontal Cylinder Rotating in Air, Transaction of the ASME 5 (1957), pp.741-749.

[25] F. Tachibana et al., Heat transfer in an annulus with inner rotating cylinder, Bulletin of JSME 3 (1960), pp.119-123.

DOI: https://doi.org/10.1299/jsme1958.3.119

[26] F. Weidermann, Praxisnahe thermische Simulation von Lagern und Führungen in Werkzeugmaschinen, 19th CAD-FEM Users Meeting, Potsdam, (2001).

Fetching data from Crossref.
This may take some time to load.