Combining Optical Metrology and Additive Manufacturing for Efficient Manufacturing of Carbon Fiber Reinforced Plastic Orthopedics: A Case Study

Abstract:

Article Preview

Often, carbon fiber reinforced plastic (CFRP) manufacturing represents an expensive, time-consuming, small-scale production due to products and components characterized by complex geometric properties. In the field of orthopedic products individual molds, usually made of metal alloys or plaster, are necessary to shape the contour of the components. The presented case study focuses on individually manufactured masks for post-operative treatment of uncomplicated midfacial fractures that are frequent and typical injuries in popular contact sports like football or handball. To improve the costly process of CFRP production of individually manufactured masks, this paper describes the advantages of the combination of optical metrology (i.e. 3D-scanning) and additive manufacturing (i.e. 3D-printing). Therefore, the conventional process chain consisting of the main process steps molding (master pattern), casting (mold), CFRP laminating, curing, cutting and final assembly is replaced by 3D-scanning (instead of master pattern), followed by the revision of the CAD-model (to prevent cutting efforts), 3D-printing (mold), CFRP laminating, curing and final assembly. Summarizing, this case study on manufacturing of carbon fiber reinforced plastic orthopedics shows that the combination of innovative manufacturing technologies opens up new possibilities to increase efficiency in craft based manufacturing.

Info:

Periodical:

Edited by:

Jörg Franke, Sven Kreitlein, Gunther Reinhart, Christian Gebbe, Rolf Steinhilper and Johannes Böhner

Pages:

275-283

Citation:

J. Jahn et al., "Combining Optical Metrology and Additive Manufacturing for Efficient Manufacturing of Carbon Fiber Reinforced Plastic Orthopedics: A Case Study", Applied Mechanics and Materials, Vol. 871, pp. 275-283, 2017

Online since:

October 2017

Export:

Price:

$38.00

* - Corresponding Author

[1] Junge A, Cheung K, Edwards T, Dvorak J: Injuries in youth amateur soccer and rugby players – comparison of incidence and characteristics. In: British Journal of Sports Medicine 38 (2004) pp.168-172.

DOI: https://doi.org/10.1136/bjsm.2002.003020

[2] Eufinger H, Heise M, Rarreck: Das Management einfacher Mittelgesichtsfrakturen unter besonderer Berücksichtigung des Profifußballs. In: Sportverletzt Sportschaden 14(1) (2000), Georg Thieme Verlag Stuttgart, New York, pp.35-40.

DOI: https://doi.org/10.1055/s-2000-3821

[3] Kretschmer F, Bauer K H, Braun M, Maurer P: Kieferchirurgische Aspekte der Versorgung von Gesichtsverletzungen bei Hochleistungssportlern. In: Deutsche Zeitschrift für Sportmedizin, Jahrgang 62, Nr. 10 (2011) p.316 – 319.

[4] Mertens C: Kampfsport Fußball – Carbon-Masken: Spielbereit trotz Gesichtsverletzung durch den Hightech-Werkstoff CFK. http: /industrieanzeiger. industrie. de/technik/fertigung/kampfsport-fussball/, access on 3th January (2017).

[5] Winter D, Röder M: 3D-Digitalisierung im Werkzeug- und Formenbau, VDI-Z 145, 10. Braunschweig: Springer VDI Verlag, (2003).

[6] Keferstein C P: Fertigungsmesstechnik - Praxisorientierte Grundlagen, moderne Messverfahren. Wiesbaden: Vieweg + Teubner Verlag, (2011).

[7] Koch A, Ruprecht M, Toedter O, Häusler G: Optische Messtechnik an technischen Oberflächen. Renningen-Malmsheim: Expert Verlag, (1998).

[8] Pfeifer T, Schmitt R: Fertigungsmesstechnik. Munich: Oldenbourg Verlag, (2010).

[9] Osten W: Optische Messtechniken zur Form- und Verformungsmessung für industrielle Anwendungen. In Heidenreich B. Optische Messtechnik in der industriellen Fertigung. Aachen: Shaker Verlag, (1998).

DOI: https://doi.org/10.3139/9783446436619.077

[10] Westermann H, Freiberger S: 3D-Scanning and Reverse Engineering: High Tech for efficient Remanufacturing. In: ReMaTecNews, 3/2013 : 13 RAI Langfords B.V. / RAI Publishing House. Amsterdam, (2013).

[11] Friedrich H E: Leichtbau in der Fahrzeugtechnik. Wiesbaden: Springer-Verlag, (2013).

[12] Gebhardt A: Generative Fertigungsverfahren: Additive Manufacturing und 3D Drucken für Prototyping - Tooling – Produktion. München: Carl Hanser Verlag, (2013).

DOI: https://doi.org/10.3139/9783446436527

[13] Erhard G: Konstruieren mit Kunststoffen. 4th ed. Munich: Hanser, (2008).

[14] Grellmann W, Seidler, S: Kunststoffprüfung. 2nd ed. Munich: Hanser, (2011).

[15] Scholz M, Blanchfield J, Bloom L: The use of composite materials in modern orthopaedic medicine and prosthetic devices: A review, Composites Science and Technology 71, pp.1791-1803, UK, (2011).

DOI: https://doi.org/10.1016/j.compscitech.2011.08.017

[16] Walbran M, Turner K, McDaid A J: Customized 3D printed ankle-foot orthosis with adaptable carbon fibre composite spring, Cogent Engineering 3: 1227022, (2016).

DOI: https://doi.org/10.1080/23311916.2016.1227022