Chemical Etching of TiO2 Nanorods Greatly Improves Current Generation of S. loihica PV-4 on a Carbon Paper Electrode

Abstract:

Article Preview

Anode surface plays important role for extracellular electron transfer (EET) of exoelectrogenic microbes in microbial fuel cell (MFC). In this report, the electrochemical performance of a TiO2 nanorod array modified carbon paper electrode (TiO2 NRs/CP) is greatly improved by controlled chemical etching process. The etching process keeps the array morphology but yields obvious hollows on tops of TiO2 nanorods. The etched electrode (TiO2 NRs-HOT/CP) exhibits better hydrophilicity than carbon paper (CP) and TiO2 NRs/CP electrode as seen from smaller contact angle (CA) and more attached microbes S.loihica PV-4. Meanwhile, the hollows allow higher local concentration of microbial self-secreted flavins that can act as electron mediators for interfacial electron transfer of PV-4 through in-direct pathway. Accordingly, PV-4 produces larger current density at TiO2 NRs-HOT/CP electrode with maximum current density of 0.038 mA cm –2, which was much higher than that at CP electrode, and almost five times higher than that at un-etched TiO2 NRs/CP electrode.

Info:

Periodical:

Edited by:

Prof. Mosbeh Kaloop

Pages:

14-18

DOI:

10.4028/www.scientific.net/AMM.875.14

Citation:

L. Dong et al., "Chemical Etching of TiO2 Nanorods Greatly Improves Current Generation of S. loihica PV-4 on a Carbon Paper Electrode", Applied Mechanics and Materials, Vol. 875, pp. 14-18, 2018

Online since:

January 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] Z. Ye, M. W. Ellis, A. S. Nain and B. Behkam, Effect of electrode sub-micron surface feature size on current generation of Shewanella oneidensis in microbial fuel cells. J. Power Sour. 347 (2017) 270-276.

DOI: 10.1016/j.jpowsour.2017.02.032

[2] M. Zhou, M. cHI, J. M. Luo, H. H. He and T. Jin, An overview of electrode materials in microbial fuel cells. J. Power Sour. 196 (2011) 4427-4435.

DOI: 10.1016/j.jpowsour.2011.01.012

[3] S. Li, C. Cheng and A. Thomas, Carbon-based microbial-fuel-cell electrodes: from conductive supports to active catalysts. Adv. Mater. 29 (2017) 1602547.

DOI: 10.1002/adma.201602547

[4] Y. Hindatu, M. S. M. Annuar and A. M. Gumel, Mini-review: Anode modification for improved performance of microbial fuel cell. Renew. Sust. Energ. Rev. 73 (2017) 236-248.

DOI: 10.1016/j.rser.2017.01.138

[5] T. Yin, H. Li, L. Su, S. Liu, C. W. Yuan and D. G. Fu, The catalytic effect of TiO2 nanosheets on extracellular electron transfer of Shewanella loihica PV-4. Phys. Chem. Chem. Phys. 18 (2016) 29871-29878.

DOI: 10.1039/c6cp04509j

[6] T. Yin, Z. Y. Lin, L. Su, C. W. Yuan and D. G. Fu, Preparation of vertically oriented TiO2 nanosheets modified carbon paper electrode and its enhancement to the performance of MFCs. ACS Appl. Mater. Interfaces, 7 (2015) 400-408.

DOI: 10.1021/am506360x

[7] A. Hu, J. Y. Wang, S. H. Qu, Z. C. Zhong, S. Wang and G. J. Liang, Hydrothermal growth of branched hierarchical TiO2 nanorod arrays for application in dye-sensitized solar cells. J. Mater. Sci., Mater. Electr. 28 (2017) 3415-3422.

DOI: 10.1007/s10854-016-5938-7

[8] X. Q. Jia, Z. H. He, X. Zhang and X. J. Tian, Carbon paper electrode modified with TiO2 nanowires enhancement bioelectricity generation in microbial fuel cell. Synth. Met. 215 (2016) 170-175.

DOI: 10.1016/j.synthmet.2016.02.015

[9] R. S. Zeng, K. Li, X . Sheng, L. P. Chen, H. J. Zhang and X. J. Feng, A room temperature approach for the fabrication of aligned TiO2 nanotube arrays on transparent conductive substrates. Chem. Commun. 21 (2016) 4045-4048.

DOI: 10.1039/c5cc10607a

[10] R. Nakamura, F. Kai, A. Okamoto, G. J. Newton and K. Hashimoto, Self-Constructed electrically conductive bacterial networks. Angew. Chem. Int. Ed. 48 (2009) 508-511.

DOI: 10.1002/anie.200804750

[11] C. M. Ding, M. L. Lv, Y. Zhu, L. Jiang and H. Liu, Wettability-regulated extracellular electron transfer from the living organism of Shewanella loihica PV-4. Angew. Chem. Int. Ed. 54 (2015) 1446-1451.

DOI: 10.1002/anie.201409163

[12] D. Z. Sun, Y. Y. Yu, R. R. Xie, C. L. Zhang, Y. Yang, D. D. Zhai, G. D. Yang, L . Liu and Y. C. Yong, In-situ growth of graphene/polyaniline for synergistic improvement of extracellular electron transfer in bioelectrochemical systems. Biosens. Bioelectr. 87 (2017).

[13] C. Zhao, C. M. Ding, M. L. Lv, Y. Wang, L. Jiang and L. Liu, Hydrophilicity boosted extracellular electron transfer in Shewanella loihica PV-4. RSC Adv. 6 (2015) 22488-22493.

DOI: 10.1039/c5ra24369f

In order to see related information, you need to Login.