Modelling and Analysis of Piezolaminated Functionally Graded Polymer Composite Structures Reinforced with Graphene Nanoplatelets under Strong Electroelastic Fields

Abstract:

Article Preview

This paper focuses on the electromechanical modelling and analysis of piezolaminated functionally graded polymer composites reinforced with graphene nanoplatelets considering strong electric field nonlinearities. Non-uniform distribution of reinforcement of graphene nanoplatelets is assumed along the thickness direction in multilayer polymer nanocomposites, whereas uniform dispersion GPLs in each layer is assumed. Modified Halpin-Tsai micromechanics is used to determine the effective Young’s modulus of GPLs considering the effects of geometry and dimension changes. Electro-elastic nonlinear constitutive relations are used to model the piezoelectric layers under strong applied electric fields. Through variational formulation, a finite element is derived to model and analyse the layered GPL/polymer composite structures. Various simulations are performed to study the effects of several parameters like distribution pattern and size of GPLs by applying actuation voltages to piezoelectric layers.

Info:

Periodical:

Edited by:

Prof. Mosbeh Kaloop

Pages:

3-8

DOI:

10.4028/www.scientific.net/AMM.875.3

Citation:

N. R. Mekala et al., "Modelling and Analysis of Piezolaminated Functionally Graded Polymer Composite Structures Reinforced with Graphene Nanoplatelets under Strong Electroelastic Fields", Applied Mechanics and Materials, Vol. 875, pp. 3-8, 2018

Online since:

January 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] X. Haung, X. Qi, F. Boey, H. Zhang, Graphene-based composites, Chem. Soc. Rev. 41(2) (2012) 666–686.

DOI: 10.1039/c1cs15078b

[2] J. R. Potts, D. R. Dreyer, C. W. Bielawski, R. S. Ruoff, Graphene-based polymer composites, Polymer 52 (2011) 5–25.

DOI: 10.1016/j.polymer.2010.11.042

[3] S. Li, W. Cao, L. E. Cross, The extrinsic nature of nonlinear behavior observed in lead zirconate titanate ferroelectric ceramic, J. Appl. Phys. 69 (1991) 7219–7224.

DOI: 10.1063/1.347616

[4] A. J. Masys, W. Ren, G. Yang, B. K. Mukherjee, 2003 Piezoelectric strain in lead zirconate titanate ceramics as a function of electric field, frequency, and dc bias, J. Appl. Phys. 94 (2003) 1152–1162.

DOI: 10.1063/1.1587008

[5] H. F. Tiersten, Electroelastic equations of electroded thin plates subject to large driving voltages, J. Appl. Phys. 74 (1993) 3389–3393.

DOI: 10.21236/ada261123

[6] W. Wagner, F. Gruttmann, A robust non-linear mixed hybrid quadrilateral shell element, Int. J. Numer. Methods Eng. 64 (2005) 635–666.

DOI: 10.1002/nme.1387

[7] M. N. Rao, R. Schmidt, Static and dynamic finite rotation FE-analysis of thin-walled structures with piezoelectric sensor and actuator patches or layers, Smart Mater. Struct. 23 (2014) 0095006.

DOI: 10.1088/0964-1726/23/9/095006

[8] M. N. Rao, R. Schmidt, K. U. Schröder, Finite rotation FE-simulation and active vibration control of smart composite laminated structures, Comput. Mech. 55(4) (2015) 719–735.

DOI: 10.1007/s00466-015-1132-7

[9] J. C. Halpin, J. L. Kardos, The halpin-tsai equations: A review. Polym. Eng. Sci. 16(5) (1976) 344-352.

DOI: 10.1002/pen.760160512

[10] R. Guzman de Villoria, A. Miravete, Mechanical model to evaluate the effect of the dispersion of nanocomposites, Acta Mater. 55(9) (2007) 3025–3031.

DOI: 10.1016/j.actamat.2007.01.007

[11] M. N. Rao, R. Schmidt, K. U. Schröder, Geometrically nonlinear static FE-simulation of multilayered magneto-electro-elastic composite structure, Compos. Struct. 127 (2015) 120–131.

DOI: 10.1016/j.compstruct.2015.03.002

[12] M. N. Rao, S. Tarun, R. Schmidt, K. U. Schröder, Finite element modelling and analysis of piezo-integrated composite structures under large applied electric fields, Smart Mater. Struct. 25 (2016) 055044.

DOI: 10.1088/0964-1726/25/5/055044

[13] M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z-Z. Yu, N. Koratkar, Enhanced mechanical properties of nano-composites at low graphene content, ACS Nano. 3 (2009) 3884-3890.

DOI: 10.1021/nn9010472

In order to see related information, you need to Login.