An Efficient Optoelectronic System for Remote Salinity Water Sensing


Article Preview

In this work, we proposed and demonstrated an efficient optoelectronic system capable to detect 1 gram of salt per liter of water (0.1% salinity) in real time employing optical fiber technology as sensing medium and embedded systems of National Instruments Company to get an accurate instrumentation process. In addition, the sensitivity of this salinity sensor can be enhanced by reducing the diameter of the optical fiber sensor structure ( by employing a controlled tapering process. More specifically, the sensitivity of this device has been raised from 141.933 nm/Refractive Index Unit (RIU) for an un-tapered sensor structure to 352.915 nm/RIU for a tapered sensor structure . In fact, considering that the tapered sensor structure provides an approximately linear response with a maximum sensitivity of 0.6624 nm / % salt, the percentage of salt is easily identified by monitoring the peak wavelength response.



Edited by:

Prof. Dongyan Shi




L. R. Villarreal Jiménez et al., "An Efficient Optoelectronic System for Remote Salinity Water Sensing", Applied Mechanics and Materials, Vol. 876, pp. 152-160, 2018

Online since:

February 2018




* - Corresponding Author

[1] P. Peter Gleik, D. K. A. Heather Cooley, The world's water, the biennial report on freshwater resources; Island Press: Washington D.C., USA, (2007), pp.29-31.

[2] National Weather Service. National Oceanic and Atmospheric Administration. Sea Water. Available online: http: /www. srh. noaa. gov/jetstream/ocean/seawater. html (Accessed on 17 January 2017).

[3] The USGS Water Science Scholl. USGS Science for a changing world. Saline Water. Available online: https: /water. usgs. gov/edu/saline. html (Accessed on 18 January 2017).

[4] S. Omboga, The Study of Electrical Conductivity of Saline Water: A Case Study of Lakes; Nakuru, Bogoria-Kenya ad Nata Saltpan Sanctuary-Botswana. A Thesis to the Graduate School in Partial Fulfillment for the Requirement of the Award of Master of Science Degree in Chemistry of Egerton University, Njoro, Kenia, May (2011).

[5] Reefkeeping…and online magazine for the marine aquarist. Available online: http: /reefkeeping. com/issues/2006-12/rhf/ (Accessed on 19 January 2017).

[6] Exploring our fluid Earth. Teaching Science as Inquiry (TSI). Question set: Using a Hydrometer to Determine Density and Salinity. Available online: https: /manoa. hawaii. edu/exploringourfluidearth/physical/density-effects/measuring-salinity/question-set-using-hydrometer-determine-density-and-salinity (Accessed on 20 January 2017).

[7] YSI a xylem brand. Conductivity. Available online: https: /www. ysi. com/parameters/conductivity (Accessed 21 January 2017).

[8] R. T. Higuti, F. De Espinoza, J. C. Adamowski, Energy method to calculate the density of liquids using ultrasonic reflection techniques. Ultrasonics Symposium, 2001, IEEE, 1, 319-322.


[9] J. Font, A. Camps, A. Borges, M. Martín-Neira, J. Boutin, N. Reul, Y. H. Kerr, A. Hahne, Mecklenburg, S. SMOS: The challenging sea surface salinity measurement from space. Proc. IEEE, 98(5) (2010) 649-665.


[10] Ocean Instruments. Conductivity, Temperature and Depth (CTD) Sensors. Available online: http: /www. whoi. edu/instruments/viewInstrument. do?id=1003 (Accessed 22 January 2017).

[11] A. J. Rodríguez-Rodríguez, D. A. May-Arrioja, C. R. Zamarreño, I. R. Matías, F. J. Arregui, R. F. Domínguez Cruz, A Fiber Optic Ammonia Sensor Using a Universal pH Indicator. Sensors, 14 (2014) 4060-4073.


[12] L. Dong, M. Jianxun, I. Zainah, I. Zubaidah, Etched FBG coated with polyimide for simultaneous detection the salinity and temperature. Opt. Commun. 39 (2017) 218-222.

[13] I. Hussain, M. Das, K. U. Ahmad, P. Nath, Water salinity detection using a smartphone. Sens. Actuat. B, 239 (2017) 1042-1059.

[14] H. A. Rahman, S. W. Harun, M. Yasin, S. W. Phang, S. S. A. Samanhuri, H. Arof, H. Ahmad, Tapered plastic multimode fiber sensor for salinity detection. Sens. Actuat. A: Phys. 171 (2011) 219-222.


[15] D. Michel, F. Xiao, K. Alameh, A compact, flexible fiber-optic Surface Plasmon Resonance sensor with changeable sensor chips. Sens. Actuat. B: Chem. 246 (2017) 258-261.


[16] J. R. Guzman-Sepulveda, V. I. Ruiz-Perez, M. Torres-Cisneros, J. J. Sanchez-Mondragon, D. A. May-Arrioja, Fiber Optic Sensor for High-Sensitivity Salinity Measurement. IEEE Photo. Tech. Lett. 25(23) (2013) 2323-2326.


[17] X. Zhang, W. Peng, Temperature-independent fiber salinity sensor based on Fabry-Perot interference. Opt. Exp. 23(8) (2015) 10353-10358.


[18] H. Z. Yang, X. G. Qiao, K. S. Lim, S. W. Harun, W. Y. Chong, M. R. Islam, H. Ahmad, Optical Fiber Sensing of Salinity and Liquid Level. IEEE Photo. Tech. Lett. 26(17) (2014) 1742-1745.

[19] Y. Zhao, X. Zhang, T. Zhao, B. Yuan, S. Zhang, Optical Salinity Sensor System Based on Fiber-Optic Array. IEEE Sens. J. 9(9) (2009) 1148 – 1153.


[20] C. R. Biazoli, S. Silva, M. A. Franco, O. Frazão, C. M. Cordeiro, Multimode interference tapered fiber refractive index sensors. Appl. Opt. 51(24) (2012) 5941-5945.


[21] A. J. Rodríguez Rodríguez, D. G. Martínez Camacho, K. González Gutiérrez, D. A. May Arrioja, R. F. Domínguez Cruz, I. R. Matías Maestro, C. Ruiz Zamarreño, Rum adulteration detection using an optical fiber sensor base don multimodal interference (MMI). Opt. Pura Apl. 46(4) (2013).


[22] A. B. Socorro, I. del Villar, J. M. Corres, F. J. Arregui, I. R. Matias, Mode transition in complex refractive index coated single-mode-multimode-single-mode-structure, Opt. Exp. 21(10) (2013) 12668-12682.


[23] S. Silva, O. Frazão, Multimode interference-based fiber sensor in a cavity ring-down system refractive index measurement. Opt. Laser Tech. 91 (2017) 112-115.


[24] H. Dong, L. Chen, J. Zhou, H. Yu, W. Qiu, J. Dong, H. Lu, J. Tang, W. Zhu, Z. Cai, Y. Xia, J. Zhang, Z. Chen, Coreless side-polished fiber: a novel fiber structure for multimode interference and highly sensitive refractive index sensors. Opt. Exp. 25(5) (2017).


[25] S. Silva, Curvature and Temperature Discrimination Using Multimode Interference Fiber Optic Structures, J. Light Wave. Technol. 30(23) (2012) 35-69.

[26] Y. Li, Multimode Interference Refractive Index Sensor Based on Coreless Fiber, Photo. Sens. 4(1) (2014) 21–27.

[27] X. Zhou, A reflective fiber-optic refractive index sensor based on multimode interference in a coreless silica fiber, Opt. Commun. 340 (2015) 50-55.


[28] Q. Meng, X. Dong, K. Ni, Y. Li, B. Xu, Z. Chen. Optical Fiber Laser Salinity Sensor Based on Multimode Interference Effect. IEEE Sens. J. 14(6) (2014) 1813-1816.


[29] H. A. Rahman, S. W. Harun, M. Yasin, S. W. Phang, S. S. A. Damanhuri, H. Arof, H. Ahmad, Tapered plastic multimode fiber sensor for salinity detection. Sens. Act. A, 171(1) (2011) 219-222.


[30] W. Bolton, Instrumentation and Control Systems, Newnes editorial, (2015).

[31] S. Kedenburg, M. Vieweg, T. Gissibl, H. Giessen, Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region. Opt. Mater. Exp. 2(11) (2012) 1588-1611.


[32] E. Sani, A. Dell'Oro, Optical constants of ethylene glycol over an extremely wide spectral range. Opt. Mater. 37 (2014) 36-41.


[33] L. R. Villarreal Jiménez, S. E. Enríquez Sías, C. E. Elizondo González, Electro-Mechanical System for the Induction of Micro-Deformations in Optical Fibers for the Sensing of Physical Variables. SOMI XXX Congreso de Instrumentación, 2015, 1-9.