Dynamic Behavior of a Cracked Woven Composite Beam under Compression


Article Preview

In this study, numerical dynamic analysis of E-glass fiber plain weave composite beams with crack under compression is considered. Before understanding the compression effect on the beam, the dynamic characteristics of the models are compared with the experimental evaluations. Results are given in tabular and graphical form.



Edited by:

Prof. Dongyan Shi




I. Demirci and M. Yetmez, "Dynamic Behavior of a Cracked Woven Composite Beam under Compression", Applied Mechanics and Materials, Vol. 876, pp. 166-170, 2018

Online since:

February 2018




* - Corresponding Author

[1] D. I. Chortis, D. S. Varelis, D. A. Saravanos. Linearized frequencies and damping in composite laminated beams subjected to buckling, J. Vib. Acoust. 135(2) (2013) 021006.

DOI: https://doi.org/10.1115/1.4023051

[2] M. Rajesh, J. Pitchaimani, Experimental investigation on buckling and free vibration behavior of woven natural fiber fabric composite under axial compression, Compos. Struct. 163 (2017) 302-311.

DOI: https://doi.org/10.1016/j.compstruct.2016.12.046

[3] S. Orhan, Analysis of free and forced vibration of a cracked cantilever beam, NDT and E Int. 40 (2007) 443-450.

DOI: https://doi.org/10.1016/j.ndteint.2007.01.010

[4] C. Karaagac, H. Öztürk, M. Sabuncu, Vibration and lateral buckling of a cantilever slender beam with and egde crack: experimental and numerical studies, J. Sound Vib. 326(1) (2009) 235-250.

DOI: https://doi.org/10.1016/j.jsv.2009.04.022

[5] G. C. Sih, Strain energy density factor applied to mixed mode crack problems, Int. J. Fract. 10 (1974) 305-322.

DOI: https://doi.org/10.1007/bf00035493

[6] A. Brencich, A. Carpinteri, Stress field interaction and strain energy distribution between a stationary main crack and its process zone, Eng. Fract. Mech. 59(6) (1998) 797-814.

DOI: https://doi.org/10.1016/s0013-7944(97)00158-6

[7] A. Boulenovar, N. Benseddiq, M. Mazari, Strain energy density prediction of crack propagation for 2D linear elastic materials, Theor. Appl. Fract. Mech. 67-68 (2013) 29-37.

DOI: https://doi.org/10.1016/j.tafmec.2013.11.001

[8] S. K. Bhullar, J. L. Wegner, A. Mioduchowski, Strain energy distribution in an auxetic plate with a crack, J. Eng. Tech. Res. 2(7) (2010) 118-125.