Characterization of Dental Metal-Ceramic Interfaces of Heat Pressed Ceramics on Co-Cr Frameworks Obtained with Different Technologies

Abstract:

Article Preview

It is known that the quality of metal-ceramic restorations mainly depends on the interface strength. The aim of the study was to evaluate metal–ceramic interfaces of heat pressed ceramic on Co-Cr frameworks obtained with different technologies: melting-casting (CST), computerized milling (MIL), selective laser sintering (SLS) and selective laser melting (SLM). The microstructure of metal–ceramic interfaces and framework topography were characterized by scanning electron microscope (SEM). Sandblasted, polished surfaces and the cross section on the interfaces were observed. Sandblasted surfaces presented a uniform rough aspect and pronounced porous surface compared to that of polished surfaces and were better visible in SLS and SLM samples. The thickness of the veneer layer had a noticeable effect on the interface, because in the case of thicker veneers, cracks at the interfaces were visible for CST and MIL specimens. Considering the findings reported herein, some suggestions can be considered in practice, such as adaptation of the restorations morphology to the characteristics of the processed materials.

Info:

Periodical:

Edited by:

Prof. Dongyan Shi

Pages:

25-30

Citation:

L. Porojan et al., "Characterization of Dental Metal-Ceramic Interfaces of Heat Pressed Ceramics on Co-Cr Frameworks Obtained with Different Technologies", Applied Mechanics and Materials, Vol. 876, pp. 25-30, 2018

Online since:

February 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] H. Li, J. Li, X. Yun, X. Liu, A. S. Fok. Non-destructive examination of interfacial debonding using acoustic emission. Dent. Mater. 27(10) (2011) 964-971.

DOI: https://doi.org/10.1016/j.dental.2011.06.002

[2] C. L. Lin, W. C. Kuo, J. J. Yu, S. F. Huang. Examination of ceramic restorative material interfacial debonding using acoustic emission and optical coherence tomography. Dent. Mater. 29(4) (2013) 382-388.

DOI: https://doi.org/10.1016/j.dental.2012.12.003

[3] I. Valeria, P. Ortega, A. Kaplan, M. P. Gomez, M. I. Lopez Pumarega, N. Nievac, Characterization of Metal/Ceramic Interfaces in Dental Materials by Acoustic Emission, Proc. Mater. Sci. 8 (2015) 683–692.

DOI: https://doi.org/10.1016/j.mspro.2015.04.125

[4] L. Wu, H. Zhu, X. Gai, Y. Wang, Evaluation of the mechanical properties and porcelain bond strength of cobalt-chromium dental alloy fabricated by selective laser melting. J. Prosthet. Dent. 111 (2014) 51-55.

DOI: https://doi.org/10.1016/j.prosdent.2013.09.011

[5] X. Z. Xin, J. Chen, N. Xiang, B. Wei, Surface properties and corrosion behavior of Co-Cr alloy fabricated with selective laser melting technique. Cell. Biochem. Biophys. 67 (2013) 983-990.

DOI: https://doi.org/10.1007/s12013-013-9593-9

[6] J. Li, X. Ye, B. Li, J. Liao, P. Zhuang, J. Ye, Effect of oxidation heat treatment on the bond strength between a ceramic and cast and milled cobalt-chromium alloys. Eur J Oral Sci 4 (2015) 297-304.

DOI: https://doi.org/10.1111/eos.12199

[7] J. C. M. Souza, R. M. Nascimento, A. E. Martinelli, Effect of compaction method and multiple firing on the formation of microstructural defects in feldspar-based dental ceramics, Cerâmica 53 (2007) 288-294.

[8] K. Quante, K. Ludwig, M. Kern, Marginal and internal fit of metal–ceramic crowns fabricated with a new laser melting technology, Dent. Mater. 24 (2008) 1311–1315.

DOI: https://doi.org/10.1016/j.dental.2008.02.011

[9] Y. Ucar, T. Akova, M. S. Akyil, W. A. Brantley, Internal fit evaluation of crowns prepared using a new dental crown fabrication technique: laser-sintered Co-Cr crowns. J. Prosthet. Dent. 102(4) (2009) 253-259.

DOI: https://doi.org/10.1016/s0022-3913(09)60165-7

[10] A. Ortorp, D. Jonsson, A. Mouhsen, P. V. Von Steyern, The fit of cobalt-chromium three-unit fixed dental prostheses fabricated with four different techniques: a comparative in vitro study. Dent. Mater. 27 (2011) 356-363.

DOI: https://doi.org/10.1016/j.dental.2010.11.015

[11] T. Akova, Y. Ucar, A. Tukay, Mc. Balkaya, Wa. Brantley, Comparison of the bond strength of laser-sintered and cast base metal dental alloys to porcelain, Dent. Mater. 24 (2008) 1400-1404.

DOI: https://doi.org/10.1016/j.dental.2008.03.001

[12] N. Xiang, Xz. Xin, J. Chen, B. Wei, Metal-ceramic bond strength of Co-Cr alloy fabricated by selective laser melting, J. Dent. 40 (2012) 453-457.

DOI: https://doi.org/10.1016/j.jdent.2012.02.006

[13] U. Iseri, Z. Ozkurt, E. Kazazoglu, Shear bond strengths of veneering porcelain to cast, machined and laser-sintered titanium, Dent. Mater. J. 30 (2011) 274-280.

DOI: https://doi.org/10.4012/dmj.2010-101

[14] T. Traini, C. Mangano, R. L. Sammons, F. Mangano, A. Macchi, A. Piattelli, Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dent. Mater. 24(11) (2008).

DOI: https://doi.org/10.1016/j.dental.2008.03.029

[15] R. Castillo-Oyague, R. Osorio, E. Osorio, F. Sanchez-Aguilera, M. Toledano, The effect of surface treatments on the microroughness of laser-sintered and vacuum-cast base metal alloys for dental prosthetic frameworks, Microsc. Res. Tech. 75 (2012).

DOI: https://doi.org/10.1002/jemt.22050

[16] J. C. M. Souza, R. M. Nascimento, A. E. Martinelli, Characterization of dental metal–ceramic interfaces immersed in artificial saliva after substructural mechanical metallization with titanium, Surf. Coat. Tech. 205 (2010) 787-792.

DOI: https://doi.org/10.1016/j.surfcoat.2010.07.116

[17] T. Akova, Y. Ucar, A. Tukay, M. C. Balkaya, W. A. Brantley, Comparison of the bond strength of laser-sintered and cast base metal dental alloys to porcelain. Dent. Mater. 24 (2008) 1400-1404.

DOI: https://doi.org/10.1016/j.dental.2008.03.001

[18] J. Serra-Prat, J. Cano-Batalla, J. Cabratosa-Termes, O. Figueras-Alvarez, Adhesion of dental porcelain to cast, milled, and laser-sintered cobaltchromium alloys: shear bond strength and sensitivity to thermocycling. J. Prosthet. Dent. 112 (2014).

DOI: https://doi.org/10.1016/j.prosdent.2014.01.004

[19] H. Wang, Q. Feng, N. Li, S. Xu, Evaluation of metal-ceramic bond characteristics of three dental Co-Cr alloys prepared with different fabrication techniques. J. Prosthet. Dent. 116(6) (2016) 916-923.

DOI: https://doi.org/10.1016/j.prosdent.2016.06.002

[20] R. M. Joias, R. N. Tango, J. E. Junho de Araujo, M. A. Junho de Araujo, Gde. S. Ferreira Anzaloni Saavedra, T. J. Paes-Junior, et al. Shear bond strength of a ceramic to Co-Cr alloys. J. Prosthet. Dent. 99 (2008) 54-59.

[21] M. R. Khmaj, A. B. Khmaj, W. A. Brantley, W. M. Johnston, T. Dasgupta, Comparison of the metal-to-ceramic bond strengths of four noble alloys with press-on-metal and conventional porcelain layering techniques. J. Prosthet. Dent. 112 (2014).

DOI: https://doi.org/10.1016/j.prosdent.2014.06.004

[22] E. Kul, L. I. Aladag, Z. Y. Duymus, Comparison of the metal-ceramic bond after recasting and after laser sintering. J. Prosthet. Dent. 114 (2015) 109-113.

DOI: https://doi.org/10.1016/j.prosdent.2015.01.016

[23] L. Yao, C. Peng, J. Wu, Wettability and bond strength between leucite reinforced dental porcelains and Co-Cr alloy. J. Prosthet. Dent. 110 (2013) 515-520.

DOI: https://doi.org/10.1016/j.prosdent.2013.04.003

[24] M. Sebastiani, F. Massimi, G. Merlati, E. Bemporad, Residual micro-stress distributions in heat-pressed ceramic on zirconia and porcelain-fused to metal systems: Analysis by FIB-DIC ring-core method and correlation with fracture toughness. Dent. Mater. 31(11) (2015).

DOI: https://doi.org/10.1016/j.dental.2015.08.158

[25] F. Massimi, G. Merlati, M. Sebastiani, P. Battaini, P. Menghini, E. Bemporad, FIB/SEM and SEM/EDS microstructural analysis of metal-ceramic and zirconia-ceramic interfaces. Bull. Group. Int. Rech. Sci. Stomatol. Odontol. 50(3) (2012) 1-10.

DOI: https://doi.org/10.1016/j.dental.2010.08.134