Qubit Noise within Micro PANDA Ring Resonator in QKD Process

Abstract:

Article Preview

The aim of this work is about establishing and analyzing the Hamiltonian for entangled photon generation in a micro PANDA ring resonator for a quantum key generation unit in quantum cryptography processing. The reduced density matrix for two level states of qubits is also analyzed by using dynamics Heisenberg equation of motion. The master equation in the thermal effect shows fluctuation of the corresponding c-operators in phase space. The optimum simulation result for probability of qubit states survive for the existence of a surrounding heat bath is also showed and discussed.

Info:

Periodical:

Edited by:

Dr. Noppakun Sanpo, Dr. Jirasak Tharajak and Dr. Paisan Kanthang

Pages:

178-182

Citation:

C. Sripakdee, "Qubit Noise within Micro PANDA Ring Resonator in QKD Process", Applied Mechanics and Materials, Vol. 879, pp. 178-182, 2018

Online since:

March 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] B. Gaury, X. Waintal, Reprint of : a computational approach to quantum noise in time-dependent nanoelectronic devices, Physica E 83 (2016) 200 - 203.

DOI: https://doi.org/10.1016/j.physe.2016.02.031

[2] M. Wang, W. Pan, Improvement of two-way continuous variable quantum cryptography by using additional noise, Phys. Lett. A 374 (2010) 2434 - 2437.

DOI: https://doi.org/10.1016/j.physleta.2010.04.006

[3] G.S. Agarwal, S. Chaturvedi, How much quantum noise of amplifiers is detrimental to entanglement, Opt. Commun. 283 (2010) 839 - 842.

DOI: https://doi.org/10.1016/j.optcom.2009.10.068

[4] F. Chapeau-Blondeau, Entanglement-assisted quantum parameter estimation from a noisy qubit pair: A Fisher information analysis, Phys. Lett. A 381 (2017) 1396 - 1378.

DOI: https://doi.org/10.1016/j.physleta.2017.02.037

[5] M. Kues, et al., On-chip generation of high-dimensional entangled quantum states and their coherent control, Nature 546 (2017) 622 - 626.

[6] M. Cheng, J. Fang, A universal quantum frequency converter via four-wave mixing processes, Opt. Comm. 368 (2016) 54 - 57.

[7] C. H. Bennett, D. P. DiVincenzo, Quantum information and computation, Nature 404 (2000) 247 - 255.

[8] K. Inoue, Quantum noise in parametric amplification under phase-mismatched conditions, Opt. Commun. 366 (2016) 71 -76.

DOI: https://doi.org/10.1016/j.optcom.2015.12.034

[9] B. Gaury, et al., Numerical simulations of time-resolved quantum electronics, Physics Report 534 (2014) 1 -37.