Development of Low-Cost Abbe Refractometer


Article Preview

Refractive index and Abbe number are major physical properties of optical materials including glasses and transparent polymers. Refractive index is, in fact, not a constant number and is varied as a function of optical wavelength. The full refractive index spectrum can be obtained using a spectrometer. However, for optical component designers, three refractive indices at the wavelengths of 486.1 nm, 589.3 nm and 656.3 nm are usually sufficient for most of the design tasks, since the rest of the spectrum can be predicted by mathematical models and interpolation. In this paper, we propose a simple optical instrumental setup that determines the refractive indices at three wavelengths and the Abbe number of solid and liquid materials.



Edited by:

Dr. Noppakun Sanpo, Dr. Jirasak Tharajak and Dr. Paisan Kanthang




W. Pongruengkiat et al., "Development of Low-Cost Abbe Refractometer", Applied Mechanics and Materials, Vol. 879, pp. 227-233, 2018

Online since:

March 2018




* - Corresponding Author

[1] J. Dostálek, J. Homola, Surface plasmon resonance based sensors, Springer, (2006).

[2] J. Homola, Present and future of surface plasmon resonance biosensors, Analytical and bioanalytical chemistry, 377 (2003) 528-539.


[3] X. Liu, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, Backward spoof surface wave in plasmonic metamaterial of ultrathin metallic structure, Scientific Reports, 6 (2016) 1-8.


[4] C. Chih-Wei, B. Tingting, C. Hai-Pang, and P. T. Leung, Nonlocal optical effects on the Goos–Hänchen shifts at multilayered hyperbolic metamaterials, Journal of Optics, 18 (2016) 025104.


[5] J. B. Pendry, Negative refraction makes a perfect lens, Physical Review Letters, 85 (2000) 3966.


[6] A. Berger and M. Pufall, Generalized magneto-optical ellipsometry, Applied Physics Letters, 71 (1997) 965-967.


[7] M. D. Porter, T. B. Bright, D. L. Allara, C. E. Chidsey, Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry, Journal of the American Chemical Society, 109 (1987).


[8] B. H. Zimm, Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss, The journal of chemical physics, 24 (1956) 269-278.


[9] M. Andrut, M. Wildner, A. Beran, The crystal chemistry of birefringent natural uvarovites. Part IV. OH defect incorporation mechanisms in non-cubic garnets derived from polarized IR spectroscopy, European Journal of Mineralogy, 14 (2002).


[10] E. M. Arruda, M. C. Boyce, Evolution of plastic anisotropy in amorphous polymers during finite straining, International Journal of Plasticity, 9 (1993) 697-720.


[11] Q. Zhou, R. N. Weinreb, Individualized compensation of anterior segment birefringence during scanning laser polarimetry, Investigative ophthalmology & visual science, 43 (2002) 2221-2228.

[12] K. Naganuma, K. Mogi, H. Yamada, Group-delay measurement using the Fourier transform of an interferometric cross correlation generated by white light, Optics letters, 15 (1990) 393-395.


[13] M. Daimon, A. Masumura, Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region, Applied Optics, 46 (2007) 3811-3820.


[14] B. Tatian, Fitting refractive-index data with the Sellmeier dispersion formula, Applied optics, 23 (1984) 4477-4485.


[15] E. Sani, A. Dell'Oro, Spectral optical constants of ethanol and isopropanol from ultraviolet to far infrared, Optical Materials, 60 (2016) 137-141.


[16] J. Rheims, J. Köser, T. Wriedt, Refractive-index measurements in the near-IR using an Abbe refractometer, Measurement Science and Technology, 8 (1997) 601.


[17] C. Carniglia, K. Schrader, P. O'Connell, S. Tuenge, Refractive index determination using an orthogonalized dispersion equation, Applied Optics, 28 (1989) 2902-2906.


[18] S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, T. E. Mallouk, Tunability of the refractive index of gold nanoparticle dispersions, Nano Letters, 7 (2007) 3418-3423.


[19] G. Spencer, M. Murty, General ray-tracing procedure, JOSA, 52 (1962) 672-678.

[20] E. A. Gurtovenko, R. I. Kostyk, Fraunhofer spectrum and a system of solar oscillator strengths, Kiev Izdatel Naukova Dumka, 1 (1989).

[21] H. K. Toh, I. R. Bateman, D. R. Diggins and B. G. Cieslinski, U.S. Patent 5, 977, 276 A. (1999).

Fetching data from Crossref.
This may take some time to load.