Conductivity Modification of Carbon-Based Nanocomposites


Article Preview

The combination of carbon materials and polymer has been well studied according to their compatable mixture in polymer with promising properties. Due to their excellent electrical and thermal properties for some types of carbons such as carbon nanotubes and graphite, they have been selected as component for nanocomposites. Here, capability of multi-walled carbon nanotubes (MWNTs) and graphite for nanocomposites were demonstrated. Nanotubes were functionalized by chemical process, and added into polyvinyl chloride (PVA) matrix. They were then used as main filler to modify thermal and electrical conductivities. Conductivities of different composite mixtures were finally investigated. With the use of low total amount of carbon materials, it was found that although there is no significant change in electrical and thermal conductivities, the highest conductivities could be obtained from MWNT to graphite ratio of 1:1 in PVA matrix, while the G-band mode does not give a rise to electron transfer.



Edited by:

Dr. Noppakun Sanpo, Dr. Jirasak Tharajak and Dr. Paisan Kanthang




T. Thurakitseree and W. Leenakul, "Conductivity Modification of Carbon-Based Nanocomposites", Applied Mechanics and Materials, Vol. 879, pp. 41-46, 2018

Online since:

March 2018




* - Corresponding Author

[1] I. Dokme, S. Altindal, I. Uslu, The effects of temperature, radiation, and illumination on current–voltage characteristics of Au/PVA(Co, Zn-doped)/n-Si Schottky diodes, J. Appl. Polym. Sci. 125 (2012) 1185-1192.

DOI: 10.1002/app.36327

[2] I. Dokme, D.E. Yildiz, S. Altindal, Illumination intensity effects on the dielectric properties of schottky devices with Co, Ni-doped PVA nanofibers as an interfacial layer, Adv. Polym. Technol. 31 (2012) 63-70.

DOI: 10.1002/adv.20236

[3] J.A. Reedijk, H.C.F. Martens, S.M.C. Bohemen, O. Hilt, M.A.J. Michels, Charge transport in doped polythiophene, Synth. Met. 101 (1999) 475-476.

DOI: 10.1016/s0379-6779(98)01231-4

[4] Y. Agari, A. Ueda, S. Nagai, Electrical and thermal conductivities of polyethylene composites filled with biaxial oriented short-cut carbon fibers, J. Appl. Polym. Sci. 52 (1994) 1223-1231.

DOI: 10.1002/app.1994.070520907

[5] X.W. Zhang, Y. Pan, Q. Zheng, X.S. Yi, A new polymer composite thermistor having double PTC transitions, J. Appl. Polym. Sci. 78 (2000) 424-429.

DOI: 10.1002/1097-4628(20001010)78:2<424::aid-app220>;2-6

[6] Y. Xi, H. Ishikawa, Y. Bin, M. Matsuo, Positive temperature coefficient effect of LMWPE–UHMWPE blends filled with short carbon fibers, Carbon 42 (2004) 1699-1706.

DOI: 10.1016/j.carbon.2004.02.027

[7] T. Kimura, S. Yasuda, Self‐temperature‐control plane heaters by graphite‐polyethylene glycol mixed systems, J. Appl. Phys. 59 (1986) 960-963.

DOI: 10.1063/1.336571

[8] Y. Bin, Q. Chen, K. Tashiro, M. Matsuo, Electrical and mechanical properties of iodine-doped highly elongated ultrahigh molecular weight polyethylene films filled with multi walled carbon nanotubes, Phys. Rev. B. 77 (2008) 035419.

DOI: 10.1103/physrevb.77.035419

[9] F.H. Gojny, M.H.G. Wichmann, B. Fiedler, I.A. Kinloch, W. Bauhofer, A.H. Windle, K. Schulte, Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites, Polymer 47 (2006) 2036-(2045).

DOI: 10.1016/j.polymer.2006.01.029

[10] A. Celzard, E. McRae, C. Deleuze, M. Dufort, G. Furdin, J.F. Mareche, Critical concentration in percolating systems containing a high aspect-ratio filler, Phys. Rev. B 53 (1996) 6209-6214.

DOI: 10.1103/physrevb.53.6209

[11] S.H. Munson-McGee, Estimation of the critical concentration in an anisotropic percolation network, Phys. Rev. B 43 (1991) 3331-3336.

DOI: 10.1103/physrevb.43.3331

[12] H.K. Park, S.M. Kim, J.S. Lee, J.H. Park, Y.K. Hong, C.H. Hong, K.K. Kim, Flexible plane heater: Graphite and carbon nanotube hybrid nanocomposite, Synthetic. Met. 203 (2015) 127-134.

DOI: 10.1016/j.synthmet.2015.02.015

[13] T. Ramanathan, F.T. Fisher, R.S. Ruoff, L.C. Brinson, Amino-functionalized carbon nanotubes for binding to polymers and biological systems, Chem. Mater. 17 (2005) 1290-1295.

DOI: 10.1021/cm048357f

[14] L.A. Carpino, 1-Hydroxy-7-azabenzotriazole. An efficient peptide coupling additive, J. Am. Chem. Soc. 115 (1993) 4397.

DOI: 10.1021/ja00063a082

[15] P. Philip, L. Fagbenle, Design of Lee's disc electrical method for determining thermal conductivity of a poor conductor in the form of a flat disc, International Journal of Innovation and Scientific Research 9 (2014) 335-343.

[16] A.M. Marconnet, N. Yamamoto, M.A. Panzer, B.L. Wardle, K.E. Goodson, Thermal conduction in aligned carbon nanotube polymer nanocomposites with high packing density, ACS Nano 5 (2011) 4818-4825.

DOI: 10.1021/nn200847u

[17] S. Wang, R. Liang, B. Wang, C. Zhang, Dispersion and thermal conductivity of carbon nanotube composites, Carbon 47 (2009) 53–57.

DOI: 10.1016/j.carbon.2008.08.024

[18] S.R. Dhakate, S. Sharma, N. Chauhan, R.K. Seth, R.B. Mathur, CNTs nanostructuring effect on the properties of graphite composite bipolar plate, Int. J. Hydrogen Energy 35 (2010) 4195–4200.

DOI: 10.1016/j.ijhydene.2010.02.072

[19] J. Zhang, M. Mine, D. Zhu, M. Matsuo, Electrical and dielectric behaviors and their origins in the three-dimensional polyvinyl alcohol/MWCNT composites with low percolation threshold, Carbon 47 (2009) 1311-1320.

DOI: 10.1016/j.carbon.2009.01.014

[20] A.E. Aliev, M.H. Lima, E.M. Silverman, R.H. Baughman, Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes, Nanotechnology 21 (2010) 035709.

DOI: 10.1088/0957-4484/21/3/035709

Fetching data from Crossref.
This may take some time to load.