Measurement Analysis for Increasing Resource Efficiency during Autoclave Processes for the Production of Fiber Composites


Article Preview

Fiber-reinforced plastics are known as outstanding lightweight composite material, which are used in various areas. Especially the demand for components made of carbon fiber reinforced plastics (CFRP) has steadily increased within the last years due to their high strength and stiffness combined with light weight. The manufacturing of CFRP components is a cost-intensive and time-consuming process due to frequently required and challenging manual operations for several working steps. In order to remain competitive and meet the small-batch production because of increasing desire for individuality and diversity, the manufacturing process of CFRP components needs further development. In order to face these challenges, this paper focuses on the resource efficiency of curing processes with the autoclave technology. The measurement analysis of the different energy consumers of the autoclave at changing the curing parameters (temperature, pressure, time) shows how the settings affect the resource efficiency of curing processes. Finally, the authors present their recommendation for action in order to increase resource efficiency.



Edited by:

Jörg Franke, Michael Scholz and Annika Höft




M. Klein et al., "Measurement Analysis for Increasing Resource Efficiency during Autoclave Processes for the Production of Fiber Composites", Applied Mechanics and Materials, Vol. 882, pp. 154-161, 2018

Online since:

July 2018




* - Corresponding Author

[1] Verein Deutscher Ingenieure (VDI), Was ist Ressourceneffizienz, Zentrum Ressourceneffizienz, Information on, last called on 13.11.(2017).

[2] O. Kaiser, et al., Ressourceneffizienz im Leichtbau, Kurzanalyse Nr. 17, VDI Zentrum Ressourceneffizienz, Berlin, (2016).

[3] H. Eickenbusch, O. Krauss, Kohlenstofffaserverstärkte Kunststoffe im Fahrzeugbau - Ressourceneffizienz und Technologien, Kurzanalyse Nr. 3, VDI Zentrum Ressourceneffizienz, Berlin, (2014).

[4] E. Witten, T. Kraus, M. Kühnel, Composites: Marktentwicklung 2016, Marktentwicklungen, Trends, Ausblicke und Herausforderungen, AVK-Industrievereinigung Verstärkte Kunststoffe e.V., (2016).

[5] E. Dückert et al., Analytische Untersuchung zur Ressourceneffizienz im verarbeitenden Gewerbe, VDI Zentrum Ressourceneffizienz, Berlin, (2015).

[6] AVK-Industrievereinigung Verstärkte Kunststoffe e.V., Handbuch Faserverbundkunststoffe: Grundlagen, Verarbeitung, Anwendungen, third ed., Vieweg+Teubner, Wiesbaden, (2010).


[7] M. Neitzel, P. Mitschang, U. Breuer, Handbuch Verbundwerkstoffe: Werkstoffe, Verarbeitung, Anwendung, second ed., Carl Hanser Verlag, Munich, (2014).


[8] H. Schürmann, Konstruieren mit Faser-Kunststoff-Verbunden, second ed., Springer-Verlag, Berlin, Heidelberg, (2007).


[9] G. Ehrenstein, Faserverbund-Kunststoffe: Werkstoffe, Verarbeitung, Eigenschaften, second ed., Carl Hanser Verlag, Munich, Vienna, (2006).


[10] Maschinenbau SCHOLZ GmbH & Co.KG, operating instruction hot air autoclave, Germany, (2017).

[11] H. Lengsfeld, et al., Faserverbundwerkstoffe: Prepregs und ihre Verarbeitung, Carl Hanser Verlag, Munich, (2015).

[12] M. Romano, Charakterisierung von gewebeverstärkten Einzellagen aus kohlenstofffaserverstärktem Kunststoff (CFK) mit Hilfe einer mesomechanischen Kinematik sowie strukturdynamischen Versuchen, Dissertation, Universität der Bundeswehr München: Athene-Forschung, Munich, (2016).

[13] Fluke, Bedienungshandbuch: (downloaded on 08.04.2018).

[14] CCeV, Carbon Composites e.V.: Global carbon composite revenue in 2013, by region (in billion U.S. dollars), in Composites Market Report (2014).