Towards a Software System Providing Knowledge about Energy and Resource Efficiency Potentials within the Product and Process Development of Electric Drives

Abstract:

Article Preview

Despite numerous research activities, guidelines and regulations, the exploitation of energy and resource efficiency potentials at companies in the field of electric drive technology is still lagging behind. Existing catalogues of measures and research results are mostly too generic or too theoretic for companies, especially for small and medium-sized enterprises (SME). Thus, this paper proposes the development of a user-oriented software system that supports the consideration of sustainability aspects within the product and process development of electric drives. The core component of this concept is a knowledge-based system (KBS), which reveals the wide range of energy and resource efficiency potentials along the whole product life cycle. In particular, correlations that exist between the individual saving potentials are to be mapped. By presenting the general solution concept and current stage of development, this paper provides the basis for future research which should focus on the further elaboration and prototypical implementation of the system proposed here.

Info:

Periodical:

Edited by:

Jörg Franke, Michael Scholz and Annika Höft

Pages:

53-63

Citation:

A. Mayr et al., "Towards a Software System Providing Knowledge about Energy and Resource Efficiency Potentials within the Product and Process Development of Electric Drives", Applied Mechanics and Materials, Vol. 882, pp. 53-63, 2018

Online since:

July 2018

Export:

Price:

$41.00

* - Corresponding Author

[1] L. Schebek et al., Ressourceneffizienz durch Industrie 4.0 – Potenziale für KMU des verarbeitenden Gewerbes,, VDI Zentrum Ressourceneffizienz GmbH, 2017. [Online]. Available: http://www.ressource-deutschland.de/file-admin/Redaktion/Bilder/Newsroom/Studie_Ressourceneffizienz_durch_Industrie_4.0.pdf.

DOI: https://doi.org/10.1007/978-3-662-53367-3_47

[2] U. Lange and C. Oberender, Ressourceneffizienz durch Maßnahmen in der Produktentwicklung,, VDI Zentrum Ressourceneffizienz GmbH, 2017. [Online]. Available: https://www.ressource-deutschland.de/fileadmin/user_upload-/downloads/kurzanalysen/VDI-ZRE_Kurzanalyse_Nr._20_Produktentwicklung_bf.pdf.

[3] Statistisches Bundesamt, Fachserie 4 Reihe 3.1: Produzierendes Gewerbe,, 2016. [Online]. Available: https://www.destatis.de/DE/Publikationen/Thematisch/IndustrieVerarbeitendesGewerbe/Konjunkturdaten/ProduktionJ2040310167004.pdf.

[4] UN Comtrade - United Nations Statistics Division, HS 02 Commodity List: 8501 Electric motors and generators," 2002. [Online]. Available: https://comtrade.un.org/db/mr/rfCommoditiesList.aspx,px=H2&cc=8501.

[5] M. Buchert, A. Manhart and J. Sutter, Untersuchungen zu Seltenden Erden: Permanentmagnete im industriellen Einsatz in Baden-Württemberg,, Öko-Institut e.V., 2014. [Online]. Available: https://www.oeko.de-/oekodoc/2053/2014-630-de.pdf.

[6] X. Liu, Y. Li, Z. Liu, T. Ling and Z. Luo, Optimized design of a high-power-density PM-assisted synchronous reluctance machine with ferrite magnets for electric vehicles,, Archives Of Electrical Eng., vol. 66, no. 2, (2017).

DOI: https://doi.org/10.1515/aee-2017-0021

[7] S. Estenlund, M. Alaküla and A. Reinap, PM-less machine topologies for EV traction: A literature review,, in Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & Int. Transportation Electrification Conf. (ESARS-ITEC), (2016).

DOI: https://doi.org/10.1109/esars-itec.2016.7841341

[8] I. Boldea, L.N. Tutelea, L. Parsa and D. Dorrell, Automotive Electric Propulsion Systems With Reduced or No Permanent Magnets: An Overview,, IEEE Trans. Ind. Electron., vol. 61, no. 10, pp.5696-5711, (2014).

DOI: https://doi.org/10.1109/tie.2014.2301754

[9] A. El-Refaie et al., Comparison of traction motors that reduce or eliminate rare-earth materials,, IEEE Energy Conversion Congr. and Exposition (ECCE), Milwaukee, WI, 2016, pp.1-8.

DOI: https://doi.org/10.1109/ecce.2016.7854945

[10] P. Plötz and W. Eichhammer, Zukunftsmarkt Effiziente Elektromotoren,, Fraunhofer Institut für System- und Innovationsforschung, 2011. [Online]. Avialable: http://www.isi.fraunhofer.de/isi-wAssets/docs/e/de/publikationen-/Fallstudie_Elektromotoren.pdf.

[11] S. Kreitlein et al., Strategies and Methods for the Energy Efficient Production of Electric Drives,, Proc. CIRP, vol. 48, pp.114-121, (2016).

[12] S. Kreitlein, A. Höft, S. Schwender and J. Franke, Green Factories Bavaria: A Network of Distributed Learning Factories for Energy Efficient Production,, Proc. CIRP, vol. 32, pp.58-63, (2015).

DOI: https://doi.org/10.1016/j.procir.2015.02.219

[13] S. Spreng, F. Risch, T. Glabel, J. Wolff and J. Franke, Evaluation of energy efficient joining processes in the field of electric drives manufacturing considering quality aspects,, in 4th Int. Electric Drives Prod. Conf. (EDPC), Nuremberg, 2014, pp.1-7.

DOI: https://doi.org/10.1109/edpc.2014.6984393

[14] B. Hofmann, S. Spreng, A. Kühl and J. Franke, Evaluation of economic and ecologic potential of induction heating in the context of insulation systems within electric drive,, in IEEE Electrical Insulation Conf. (EIC), Seattle, WA, 2015, pp.288-291.

DOI: https://doi.org/10.1109/icacact.2014.7223541

[15] B. Hofmann, S. Spreng, J. Franke and B. Maryniak, Innovative and Energy-Efficient Insulation Technology for the Production of Electric Drives,, in 4th Int. Electric Drives Prod. Conf. (EDPC), Nuremberg, 2014, pp.20-24.

DOI: https://doi.org/10.1109/edpc.2014.6984382

[16] B. Hofmann, J. Hirschbrunn, M. Buchfelner and J. Franke, A universal analysis tool for process- and energy-optimization of insulation processes in the production of electric drives,, in 5th Int. Electric Drives Prod. Conf. (EDPC), Nuremberg, 2015, pp.1-5.

DOI: https://doi.org/10.1109/edpc.2015.7323199

[17] A. Meyer, C. Ringelhan, C. Fischer and J. Franke, Energy Efficient Strategies for Processing Rare Earth Permanent Magnets,, Applied Mechanics and Materials, vol. 856, pp.195-200, (2017).

DOI: https://doi.org/10.4028/www.scientific.net/amm.856.195

[18] N. Urban, A. Meyer, S. Kreitlein, F. Leicht and J. Franke, Efficient near Net-Shape Production of High Energy Rare Earth Magnets by Laser Beam Melting,, Applied Mechanics and Materials, vol. 871, p.137–144, (2017).

DOI: https://doi.org/10.4028/www.scientific.net/amm.871.137

[19] A. Meyer, A. Abersfelder, N. Urban, M. Schneider and J. Franke, Fertigungsbegleitende Qualitätskontrolle in der Elektromotorenfertigung,, ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb, vol. 112, no. 4, pp.200-203, (2017).

DOI: https://doi.org/10.3139/104.111694

[20] A. Meyer et al., Concept for Magnet Intra Logistics and Assembly Supporting the Improvement of Running Characteristics of Permanent Magnet Synchronous Motors,, Proc. CIRP, vol. 43, pp.356-361, (2016).

DOI: https://doi.org/10.1016/j.procir.2016.02.133

[21] U. Bast et al., Recycling von Komponenten und strategischen Metallen aus elektrischen Fahrantrieben,, 2014. [Online]. Available: https://www.ifa.tu-clausthal.de/fileadmin/Aufbereitung/Dokumente_News_ETC/MORE_Abschlussbericht.pdf.

[22] S. Spreng, J. Kohl, P. Proshovsky and J. Franke, Simulation Based Evaluation of Energy Saving Potentials in the Field of Electric Drives Manufacturing,, Applied Mechanics and Materials, vol. 805, pp.67-72, (2015).

DOI: https://doi.org/10.4028/www.scientific.net/amm.805.67

[23] J. Kohl, S. Spreng, B. Hofmann and J. Franke, Minimization of energy needs in the industry of electric drives manufacturing considering process-related temperature curves,, in 4th Int. Electric Drives Prod. Conf. (EDPC), Nuremberg, 2014, pp.425-429.

DOI: https://doi.org/10.1109/edpc.2014.6984430

[24] M. Brandmeier and J. Franke, Ontology-Based User Guidance for Energy Efficiency Optimization Measures,, in Int. Conf. on Ind. Eng. and Operations Manage. (IEOM), Kuala Lumpur, Malaysia, 2016, pp.1649-1657.

[25] M. Brandmeier, M. Brossog and J. Franke, Semantic Meta Model for the Description of Resource and Energy Data in the Energy Data Management Cycle,, Applied Mechanics and Materials, vol. 871. pp.69-76, (2017).

DOI: https://doi.org/10.4028/www.scientific.net/amm.871.69

[26] M. Brandmeier, K. Rummler, M. Brossog and J. Franke, Green Energy Management Portal-Knowledge and Project Management for Energy Efficiency Projects,, Applied Mechanics and Materials, vol. 805, pp.67-72, (2015).

DOI: https://doi.org/10.4028/www.scientific.net/amm.805.38

[27] V. Wohlgemuth, T. Ziep, V. Krehahn and L. Schiemann, Entwicklung eines Open Source basierten Baukastens zur Identifikation von Ressourceneffizienzpotentialen in produzierenden KMU,, in IT-gestütztes Ressourcen- und Energiemanagement: Konferenzband zu den 5. BUIS-Tagen. Wiesbaden, Germany: Springer Vieweg, 2013, pp.499-508.

DOI: https://doi.org/10.1007/978-3-642-35030-6_47

[28] VDI Zentrum Ressourceneffizienz GmbH, Umsetzung von Ressourceneffizienz-Maßnahmen in KMU und ihre Treiber,, Berlin, 2011. [Online]. Available: https://www.ressource-deutschland.de/fileadmin/user_upload/downloads/-studien/28-11-2011_Broschuere_Web.pdf.

[29] A. Kampker, P. Burggräf, C. Nee and M. K. Büning, Integrated product and process development for electric engine production,, in 18th Electric Power Distribution Conf., Kermanshah, 2013, pp.1-5.

DOI: https://doi.org/10.1109/epdc.2013.6914709

[30] A. Mayr et al., Concept for an Integrated Product and Process Development of Electric Drives Using a Knowledge-based System,, 7th Int. Electric Drives Prod. Conf. (EDPC), Nuremberg, 2017, to be published.

DOI: https://doi.org/10.1109/edpc.2017.8328157

[31] C. Beierle and G. Kern-Isnberner, Methoden wissensbasierter Systeme: Grundlagen, Algorithmen, Anwendungen. Wiesbaden, Germany: Springer Vieweg, (2014).

[32] S. Klabunde, Wissensmanagement in der integrierten Produkt-und Prozessgestaltung: Best-Practice-Modelle zum Management von Meta-Wissen. Wiesbaden, Germany: Deutscher Universtiäts-Verlag, (2013).

DOI: https://doi.org/10.1007/978-3-322-81996-3_5

[33] J. Gausemeier, A. Trächtler, W. Schäfer and H. Anacker, Semantische Technologien im Entwurf mechatronischer Systeme: Effektiver Austausch von Lösungswissen in Branchenwertschöpfungsketten. München, Germany: Hanser, (2014).

DOI: https://doi.org/10.3139/9783446438453

[34] M. Milana, M.K. Khan and J.E. Munive-Hernandez, Design and development of Knowledge Based System for Integrated Maintenance,, Strategy and Operations, vol. 25, no. 1, p.5–18, (2017).

[35] A. Kohn, Entwicklung einer Wissensbasis für die Arbeit mit Produktmodellen,, dissertation, TU Munic, Munic, Germany, (2014).

[36] L. Schmidt, C.M. Schlick and J. Grosche, Ergonomie und Mensch-Maschine-Systeme. Berlin/Heidelberg, Germany: Springer-Verlag, (2008).

DOI: https://doi.org/10.1007/978-3-540-78331-2

[37] F. Bodendorf, Daten- und Wissensmanagement. 2nd ed. Berlin, Germany: Springer-Verlag, (2006).

[38] A.B. Ammar, Graph Database Partitioning: A Study. Kairouan, Tunisia, Kairouan University, Higher Institute of Computer Science and Management, (2016).

[39] P. Tanwar, T.V. Prasad and M.S. Aswal, Comparative Study of Three Declaratve Knowledge Representation Techniques,, in Int. J. on Comp. Sci. and Eng., vol. 2, no. 7, (2010).

[40] F. A. Batarseh and A.J. Gonzalez, Incremental Lifecycle Validation of Knowledge-Based Systems Through CommonKADS,, IEEE Trans. Syst., Man, Cybern., Syst., vol. 43, no. 3, p.643–654, (2013).

DOI: https://doi.org/10.1109/tsmca.2012.2211348

[41] D. Altenkrüger and W. Büttner, Wissensbasierte Systeme: Architektur, Entwicklung, Echtzeitanwendungen - Eine praxisgerechte Einführung. Wiesbaden, Germany: Vieweg+Teubner Verlag, (1992).

[42] K.-U. Carstensen et al., Computerlinguistik und Sprachtechnologie: Eine Einführung, 3rd. ed. Heidelberg, Germany: Spektrum Akademischer Verlag, (2010).

[43] S. Staab, Wissensmanagement mit Ontologien und Metadaten,, Informatik-Spektrum, vol. 25, no. 3, p.194–209, (2002).

DOI: https://doi.org/10.1007/s002870200226

[44] T. Breitsprecher and S. Wartzack, Konzept für eine simulationsgetriebenewissensbasierte Produktentwicklung im Umfeld mechatronischer Produkte,, in 21. DfX-Symposium, Buchholz, (2010).

[45] N. Gronau et al., Anwendungen und Systeme für das Wissensmanagement: Ein aktueller Überblick. Berlin, Germany: GITO-Verlag, (2009).

[46] N. Gader, V. Lux-Pogodalla and A Polguère, Hand-Crafting a Lexical Network with a Knowledge-Based Graph Editor,, in 3rd Workshop on Cognitive Aspects of the Lexicon (CogALex III), Mumbai, (2012).

DOI: https://doi.org/10.3115/v1/w14-4720

[47] T.v. Landesberger, S. Bremm and T. Schreck, Smart Query Definition for Content-Based Search in Large Sets of Graphs,, in Int. Symp. on Visual Analytics Sci. and Technol., (2010).

[48] Graphileon, Graphileon: Your Path to Graphs,, 2018. [Online]. Available: https://www.graphileon.com.

[49] R.M. O'Keefe and D.E. O'Leary, Expert system verification and validation: a survey and tutorial,, Artificial Intelligence Review, no. 7, p.3–42, (2018).

[50] S. Ram and S. Ram, Design and validation of a knowledge-based system for screening product innovations,, IEEE Trans. Syst., Man, Cybern., Syst., vol. 26, no. 2, p.213–221, (1996).

DOI: https://doi.org/10.1109/3468.485747

[51] W.-T. Tsai, R. Vishnuvajjala and Du Zhang, Verification and Validation of Knowledge-Based Systems,, IEEE Trans. Knowl. Data Eng., vol. 11, no. 1, p.202–212, (1999).

DOI: https://doi.org/10.1109/69.755629

[52] D.E. O'Leary, Design, Development and Validation of Expert Systems: A Survey of Developers, California: University of Southern California, (1991).