Microstructure and Fracture Toughness of a TiAl/Ti Laminated Composite


Article Preview

In this paper, the TiAl/Ti laminated (MIL) composite was fabricated via hot-pack rolling of the as-forged Ti-43Al-9V-0.3Y (at.%) plates and commercial Ti6Al4V (wt.%) sheet at 1250°C and then annealed at 90°C for 6 hours. The composite was analyzed by XRD and SEM techniques, respectively. Results showed that the interface between Ti and TiAl in the composite was consisted of four different microstructure areas and the phase constitutions for each area were: area 1: acicular β-Ti and α2 phase; area 2: acicular α2 phase; area 3: acicular α2 phase and B2 matrix; and area 4: acicular γ, α2 phase and B2 matrix. The fracture toughness of the TiAl/Ti MIL composite was tested, showing that the KIC value was about 38.35MPa·m1/2 at room temperature and higher than that of the pure Ti-43Al-9V-0.3Y alloy, which had a value of about 24.72 MPa·m1/2. The possible toughening mechanism for the TiAl/Ti MIL composite was discussed.



Edited by:

Leandro Bolzoni




W. Sun et al., "Microstructure and Fracture Toughness of a TiAl/Ti Laminated Composite", Applied Mechanics and Materials, Vol. 884, pp. 29-35, 2018

Online since:

August 2018




* - Corresponding Author

[1] Y.B. Zhao, S.Z. Zhang, C.J. Zhang, P. Lin, Z.P. Hou, Y.Y. Chen, Microstructural evolution of hot-forged high Nb containing TiAl alloy during high temperature tension, Mater. Sci. Eng. A. 678 (2016) 116-121.

DOI: https://doi.org/10.1016/j.msea.2016.09.095

[2] Y.J. Su, F.T. Kong, Y.Y. Chen, N. Gao, D.L. Zhang, Microstructure and mechanical properties of large size Ti-43Al-9V-0.2Y alloy pancake produced by pack-forging, Intermetallics. 34 (2013) 29-34.

DOI: https://doi.org/10.1016/j.intermet.2012.11.004

[3] K.S. Chan, Understanding fracture toughness in gamma TiAl, JOM. 44 (1992) 30-38.

DOI: https://doi.org/10.1007/bf03223047

[4] K.T. Venkateswara Rao, G.R. Odette, R.O. Ritchie, On the contrasting role of ductile-phase reinforcements in the fracture toughness and fatigue-crack propagation behavior of TiNb/γ-TiAl intermetallic matrix composites, Acta Metal. Mat. 40 (1992).

DOI: https://doi.org/10.1016/0956-7151(92)90309-3

[5] K.B. Povarova, V.I. Burmistrov, A.V. Antonova, S.V. Gnidash, K.V. Veprintsev, Method for the production of TiAl-based layered composite billets containing a ductile constituent, Rus. Metall. (Metally). 2006 (2006) 249-254.

DOI: https://doi.org/10.1134/s0036029506030116

[6] K.S. Vecchio, F.C. Jiang, Fracture toughness of Ceramic-Fiber-Reinforced Metallic-Intermetallic-Laminate (CFR-MIL) composites, Mater. Sci. Eng. A. 649 (2016) 407-416.

DOI: https://doi.org/10.1016/j.msea.2015.10.018

[7] A. Rohatgi, D.J. Harach, K.S. Vecchio, K.P. Harvey, Resistance-curve and fracture behavior of Ti-Al3Ti metallic-intermetallic laminate (MIL) composites, Acta Mater. 51 (2003) 2933-2957.

DOI: https://doi.org/10.1016/s1359-6454(03)00108-3

[8] S.Y. Lyu, Y.B. Sun, L. Ren, W.L. Xiao, C.L. Ma, Simultaneously achieving high tensile strength and fracture toughness of Ti/Ti-Al multilayered composites, Intermetallics. 90 (2017) 16-22.

DOI: https://doi.org/10.1016/j.intermet.2017.06.007

[9] D.R. Lesuer, C.K. Syn, O.D. Sherby, J. Wadsworth, J.J. Lewandowski, W.H. Hunt, Mechanical behaviour of laminated metal composites, International Materials Reviews. 41 (1996) 169-197.

DOI: https://doi.org/10.1179/imr.1996.41.5.169

[10] F.J.J. van Loo, G.D. Rieck, Diffusion in the titanium-aluminium system—II. Interdiffusion in the composition range between 25 and 100 at.% Ti, Acta Metall. 21 (1973) 73-84.

DOI: https://doi.org/10.1016/0001-6160(73)90221-6

[11] F.T. Kong, Y.Y. Chen, D.L. Zhang, Interfacial microstructure and shear strength of Ti-6Al-4V/TiAl laminate composite sheet fabricated by hot packed rolling, Mater. Des. 32 (2011) 3167-3172.

DOI: https://doi.org/10.1016/j.matdes.2011.02.052

[12] F.T. Kong, Y.Y. Chen, Preparation of γ-TiAl/TC4 composite sheet and its microstructure and properties, Rare Met. Mater. Eng. 38 (2009) 1484-1486.

[13] T. Ahmed, H.M. Flower, Partial isothermal sections of Ti-Al-V ternary diagram, Materials Science and Technology. 10 (1994) 272-288.

DOI: https://doi.org/10.1179/mst.1994.10.4.272

[14] R. Kainuma, Y. Fujita, H. Mitsui, I. Ohnuma, K. Ishida, Phase equilibria among α (hcp), β (bcc) and γ (L10) phases in Ti-Al base ternary alloys, Intermetallics. 8 (2000) 855-867.

DOI: https://doi.org/10.1016/s0966-9795(00)00015-7

[15] F.T. Kong, Y.Y. Chen, W. Wang, Z.G. Liu, S.L. Xiao, Microstructures and mechanical properties of hot-pack rolled Ti-43Al-9V-Y alloy sheet, Trans. Nonferrous Met. Soc. China. 19 (2009) 1126-1130.

DOI: https://doi.org/10.1016/s1003-6326(08)60418-5

[16] F.C Jiang, R.M. Kulin, K.S. Vecchio, Use of Brazilian disk test to determine properties of metallic-intermetallic laminate composites, JOM. 62 (2010) 35-40.

DOI: https://doi.org/10.1007/s11837-010-0008-8

Fetching data from Crossref.
This may take some time to load.