Robust Design of a Smart Structure under Manufacturing Uncertainty via Nonsmooth PDE-Constrained Optimization

Abstract:

Article Preview

We consider the problem of finding the optimal shape of a force-sensing element which is integrated into a tubular structure. The goal is to make the sensor element sensitive to specific forces and insensitive to other forces. The problem is stated as a PDE-constrained minimization program with both nonconvex objective and nonconvex constraints. The optimization problem depends on uncertain parameters, because the manufacturing process of the structures underlies uncertainty, which causes unwanted deviations in the sensory properties. In order to maintain the desired properties of the sensor element even in the presence of uncertainty, we apply a robust optimization method to solve the uncertain program.The objective and constraint functions are continuous but not differentiable with respect to the uncertain parameters, so that existing methods for robust optimization cannot be applied. Therefore, we consider the nonsmooth robust counterpart formulated in terms of the worst-case functions, and show that subgradients can be computed efficiently. We solve the problem with a BFGS--SQP method for nonsmooth problems recently proposed by Curtis, Mitchell and Overton.

Info:

Periodical:

Edited by:

Peter F. Pelz and Peter Groche

Pages:

131-144

Citation:

P. Kolvenbach et al., "Robust Design of a Smart Structure under Manufacturing Uncertainty via Nonsmooth PDE-Constrained Optimization", Applied Mechanics and Materials, Vol. 885, pp. 131-144, 2018

Online since:

November 2018

Export:

* - Corresponding Author

[1] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization. Princeton series in applied mathematics. Princeton [u.a.]: Princeton Univ. Press, 2009. ISBN: 978-0-691- 14368-2.

DOI: https://doi.org/10.1515/9781400831050

[2] Aharon Ben-Tal and Arkadi Nemirovski. Robust solutions of linear programming problems contaminated with uncertain data,. In: Mathematical programming 88.3 (2000), pp.411-424.

DOI: https://doi.org/10.1007/pl00011380

[3] Aharon Ben-Tal and Arkadi Nemirovski. Robust truss topology design via semidefinite programming,. In: SIAM Journal on Optimization 7.4 (1997), pp.991-1016.

DOI: https://doi.org/10.1137/s1052623495291951

[4] Dimitris Bertsimas, David B. Brown, and Constantine Caramanis. Theory and Applications of Robust Optimization,. In: SIAM Review 53.3 (Jan. 2011), pp.464-501. ISSN: 0036-1445, 1095- 7200.

DOI: https://doi.org/10.1137/080734510

[5] Dimitris Bertsimas, Omid Nohadani, and Kwong Meng Teo. Nonconvex Robust Optimization for Problems with Constraints,. In: INFORMS Journal on Computing 22.1 (Feb. 2010), pp.44-58. ISSN: 1091-9856, 1526-5528.

DOI: https://doi.org/10.1287/ijoc.1090.0319

[6] Dimitris Bertsimas, Omid Nohadani, and Kwong Meng Teo. Robust optimization for unconstrained simulation-based problems,. In: Operations Research 58.1 (2010), pp.161-178.

DOI: https://doi.org/10.1287/opre.1090.0715

[7] John R. Birge and François Louveaux. Introduction to stochastic programming. Springer series in operations research. New York, 1997. ISBN: 0-387-98217-5.

[8] James V. Burke, Adrian S. Lewis, and Michael L. Overton. A Robust Gradient Sampling Algorithm for Nonsmooth, Nonconvex Optimization,. In: SIAM Journal on Optimization 15.3 (Jan. 2005), pp.751-779. ISSN: 1052-6234, 1095-7189.

DOI: https://doi.org/10.1137/030601296

[9] Frank H. Clarke. Generalized gradients and applications,. In: Transactions of the American Mathematical Society 205 (1975), pp.247-262.

[10] Frank E. Curtis, Tim Mitchell, and Michael L. Overton. A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its evaluation using relative minimization profiles,. In: Optimization Methods and Software 32.1 (Jan. 2, 2017), pp.148-181.

DOI: https://doi.org/10.1080/10556788.2016.1208749

[11] Frank E. Curtis and Michael L. Overton. A Sequential Quadratic Programming Algorithm for Nonconvex, Nonsmooth Constrained Optimization,. In: SIAM Journal on Optimization 22.2 (Jan. 2012), pp.474-500. ISSN: 1052-6234, 1095-7189.

DOI: https://doi.org/10.1137/090780201

[12] Joerg Deckers and Edwin Becker. Overload and Condition Monitoring in Rolling Mills via Internet,. In: IFAC Proceedings Volumes 37.15 (2004), pp.281-286. ISSN: 1474-6670.

DOI: https://doi.org/10.1016/s1474-6670(17)31037-6

[13] Michel C. Delfour and J.-P. Zolésio. Shapes and geometries : analysis, differential calculus, and optimization. Advances in design and control. Philadelphia, 2001. ISBN: 0-89871-489-3.

[14] B. Denkena et al. Development and first applications of gentelligent components over their lifecycle,. In: CIRP Journal of Manufacturing Science and Technology 7.2 (2014), pp.139-150. ISSN: 1755-5817.

DOI: https://doi.org/10.1016/j.cirpj.2013.12.006

[15] Moritz Diehl, Hans Georg Bock, and Ekaterina Kostina. An approximation technique for robust nonlinear optimization,. In: Mathematical Programming 107.1 (June 2006), pp.213-230. ISSN: 0025-5610, 1436-4646.

DOI: https://doi.org/10.1007/s10107-005-0685-1

[16] Moritz Diehl et al. Numerical solution approaches for robust nonlinear optimal control problems,. In: Computers and Chemical Engineering 32.6 (June 2008), pp.1279-1292.

DOI: https://doi.org/10.1016/j.compchemeng.2007.06.002

[17] Roger Fletcher and Sven Leyffer. A bundle filter method for nonsmooth nonlinear optimization. Numerical Analysis Report NA/195. Dundee: University of Dundee, Dec. 22, (1999).

[18] Peter Giesecke. Dehnungsmeßstreifentechnik: Grundlagen und Anwendungen in der industriellen Meßtechnik. Studium Technik. OCLC: 263334623. Braunschweig: Vieweg, 1994. ISBN: 978-3-528-03375-0.

DOI: https://doi.org/10.1007/978-3-322-86797-1_2

[19] Bram L. Gorissen, İhsan Yanıkoğlu, and Dick den Hertog. A practical guide to robust optimization,. In: Omega 53 (June 2015), pp.124-137. ISSN: 03050483.

DOI: https://doi.org/10.1016/j.omega.2014.12.006

[20] Peter Groche and Martin Krech. Efficient production of sensory machine elements by a twostage rotary swaging process-Relevant phenomena and numerical modelling,. In: Journal of Materials Processing Technology 242 (2017).

DOI: https://doi.org/10.1016/j.jmatprotec.2016.11.034

[21] E. T. Hale and Y. Zhang. Case Studies for a First-Order Robust Nonlinear Programming Formulation,. In: Journal of Optimization Theory and Applications 134.1 (July 17, 2007), pp.27-45. ISSN: 0022-3239, 1573-2878.

DOI: https://doi.org/10.1007/s10957-007-9208-y

[22] Michael Hinze et al. Optimization with PDE Constraints. Vol. 23. Mathematical Modelling: Theory and Application. Springer, (2009).

[23] Boris Houska and Moritz Diehl. Nonlinear robust optimization via sequential convex bilevel programming,. In: Mathematical Programming 142.1 (Dec. 2013), pp.539-577. ISSN: 0025- 5610, 1436-4646.

DOI: https://doi.org/10.1007/s10107-012-0591-2

[24] Krzysztof C. Kiwiel. Convergence of the Gradient Sampling Algorithm for Nonsmooth Nonconvex Optimization,. In: SIAM Journal on Optimization 18.2 (Jan. 2007), pp.379-388. ISSN: 1052-6234, 1095-7189.

DOI: https://doi.org/10.1137/050639673

[25] Martin Krech, Andreas Trunk, and Peter Groche. Controlling the sensor properties of smart structures produced by metal forming,. In: Procedia Engineering 207 (2017), pp.1415-1420. ISSN: 1877-7058.

DOI: https://doi.org/10.1016/j.proeng.2017.10.906

[26] Oliver Lass and Stefan Ulbrich. Model Order Reduction Techniques with a Posteriori Error Control for Nonlinear Robust Optimization Governed by Partial Differential Equations,. In: SIAM Journal on Scientific Computing 39.5 (Jan. 2017), S112-S139. ISSN: 1064-8275, 1095- 7197.

DOI: https://doi.org/10.1137/16m108269x

[27] Adrian S. Lewis and Michael L. Overton. Nonsmooth optimization via quasi-Newton methods,. In: Mathematical Programming 141.1 (Oct. 2013), pp.135-163. ISSN: 0025-5610, 1436- 4646.

DOI: https://doi.org/10.1007/s10107-012-0514-2

[28] Marko M. Makela, Napsu Karmitsa, and W. Outi. Multiobjective proximal bundle method for nonsmooth optimization. TUCS, Technical Report, (2014).

DOI: https://doi.org/10.1007/978-3-319-23564-6_12

[29] Rembert Reemtsen, ed. Semi-infinite programming. Vol. 25. Nonconvex optimization and its applications. Boston, 1998. ISBN: 0-7923-5054-5.

DOI: https://doi.org/10.1007/978-1-4757-2868-2

[30] Helga Schramm and Jochem Zowe. A version of the bundle idea for minimizing a nonsmooth function: Conceptual idea, convergence analysis, numerical results,. In: SIAM journal on optimization 2.1 (1992), pp.121-152.

DOI: https://doi.org/10.1137/0802008

[31] Adrian Sichau and Stefan Ulbrich. A Second Order Approximation Technique for Robust Shape Optimization,. In: Applied Mechanics and Materials 104 (Sept. 2011), pp.13-22. ISSN: 1662- 7482.

DOI: https://doi.org/10.4028/www.scientific.net/amm.104.13

[32] D.M. Stefanescu. Handbook of Force Transducers: Principles and Components. Springer Berlin Heidelberg, 2011. ISBN: 978-3-642-18295-2.

[33] Elias M. Stein. Singular integrals and differentiability properties of functions. Vol. 30. Princeton mathematical series. Princeton, NJ, 1970. ISBN: 0-691-08079-8.

[34] Oliver Stein. Bi-level strategies in semi-infinite programming. Vol. 71. Nonconvex optimization and its applications. Boston, 2003. ISBN: 1-4020-7567-7.

DOI: https://doi.org/10.1007/978-1-4419-9164-5

[35] Oliver Stein. How to solve a semi-infinite optimization problem,. In: European Journal of Operational Research 223.2 (Dec. 2012), pp.312-320. ISSN: 03772217.

DOI: https://doi.org/10.1016/j.ejor.2012.06.009

[36] Y. Zhang. General Robust-Optimization Formulation for Nonlinear Programming,. In: Journal of Optimization Theory and Applications 132.1 (Mar. 1, 2007), pp.111-124. ISSN: 0022- 3239, 1573-2878.

DOI: https://doi.org/10.1007/s10957-006-9082-z