Cloudbased Production Optimization - Potential and Limits Today


Article Preview

This paper shows how a databased approach towards production optimization was realized with the help of cloud-technologies. Several uncertainties, either in the manufacturing of the producing machines or in the production on these machines can be systematically reduced. In this way a significant improvement in production amount, but also in produced quality can be reached.



Edited by:

Peter F. Pelz and Peter Groche




R. Feist, "Cloudbased Production Optimization - Potential and Limits Today", Applied Mechanics and Materials, Vol. 885, pp. 48-55, 2018

Online since:

November 2018



* - Corresponding Author

[1] N. A. Fleck, K. L. Johnson, Cold rolling of foil, Journal of Engineering Manufacture, Vol. 206, (1992).

[2] R. Guo, Recent Advances on Rolling Force Model – Solutions of von Karmann Rolling Equations, Conference Paper – METEC 2015 Düsseldorf, Stahleisen, Düsseldorf, (2015).

[3] Stuart Russell, Peter Norvig, Artificial Intelligence: A Modern Approach (Third edition), Pearson, (2009).

[4] Sergey Melnik et al., Dremel: Interactive Analiysis of Web-Scale Datasets Proceedings of the VLDB Endowment, Vol. 3, No.1.

[5] Paul McDonald: Introducing Google App Engine + our new blog.

[6] Amies, Alex; Sluiman, Harm; Tong, Qiang Guo, Liu, Guo Ning (July 2012), Infrastructure as a Service Cloud Concepts, Developing and Hosting Applications on the Cloud, IBM Press, (2012).

[7] Nick Ragouzis et. al., Security Assertion Markup Language (SAML) V2.0 Technical Overview, OASIS, (2008).

[8] Wolfgang Mahnke et al., OPC Unified Architecture, Springer Verlag, (2009).

[9] Edwin Schicker, Datenbanken und SQL: Eine praxisorientierte Einführung, Teubner Verlag, (1996).

[10] unknown, [MS-SMB2]: Server Message Block (SMB) Protocol Versions 2 and 3, MSDN Microsoft,

[11] Lukas Ruebbelke, AngularJS in Action (1st ed.), Manning Publications, (2015).

[12] Pautasso, Cesare, Wilde, Erik, Alarcon, Rosa (Eds.), REST: Advanced Research Topics and Practical Applications, Springer Verlag, (2014).


[13] Markus Hoffman, Ralf Klinkenberg, RapidMiner: Data Mining Use Cases and Business Analytics Applications, CRC Press, (2013).