Resilient Product Development - A New Approach for Controlling Uncertainty


Article Preview

By combining the established development method according to VDI guideline 2206 and the new approach of resilience, resilient product development makes it possible to control uncertainty in the early development phases. Based on the uncertainty that can occur in a classical product development process, such as uncertainty due to (i) the transition from function to building structure, (ii) interaction of modules and (iii) planning uncertainty, we first discuss the limits of existing product development guidelines and introduce the concept of resilience. The basic idea is that a resilient process can control uncertainty through the four resilience functions (i) monitoring, (ii) responding, (iii) learning and (iv) anticipating. We apply this new approach to the product development of the actuators of the active airspring of the TU Darmstadt. The active air spring can be used to increase driving comfort in a vehicle or, for example, to minimize kinetosis during autonomous driving.



Edited by:

Peter F. Pelz and Peter Groche




P. Hedrich et al., "Resilient Product Development - A New Approach for Controlling Uncertainty", Applied Mechanics and Materials, Vol. 885, pp. 88-101, 2018

Online since:

November 2018


* - Corresponding Author

[1] G. Pahl, W. Beitz, J. Feldhusen, and K.-H. Grote. Konstruktionslehre. Vol. 7. Berlin: Springer Verlag, (2007).

[2] VDI 2206. Entwicklungsmethodik für mechatronische Systeme. Berlin: Beuth Verlag, June (2004).

[3] T. Schmidt and K. Paetzold. Agilität als Alternative zu traditionellen Standards in der Entwicklung physischer Produkte: Chancen und Herausforderungen,. In: Design for X (DfX) Symposium (Jesteburg). 2016, pp.255-267.

[4] VDI 2221. Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte. Berlin: Beuth Verlag, May (1993).

[5] T. Bedarff. Grundlagen der Entwicklung und Untersuchung einer aktiven Luftfeder für Personenkraftwagen,. Dissertation. TU Darmstadt, (2017).

[6] J. Lückel, T. Koch, and J. Schmitz. Mechatronik als integrative Basis für innovative Produkte,. In: Mechatronik - Mechanik/Elektrische Antriebstechnik (Wiesloch). VDI Berichte. 2000, pp.1-26.

[7] P. F. Pelz, U. Lorenz, T. Ederer, M. Metzler, and P. Pöttgen. Global System Optimization and Scaling for Turbo Systems and Machines,. In: 15th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (Honolulu, Hawaii). (2014).

[8] M. Holl, L. Rausch, and P. F. Pelz. New methods for new systems - How to find the technoeconomically optimal hydrogen conversion system,. In: International Journal of Hydrogen Energy 42.36 (2017), pp.22641-22654.


[9] W. L. Oberkampf, S. M. DeLand, B. Rutherford, K. V. Diegert, and K. F. Alvin. Error and uncertainty in modeling and simulation,. In: Reliability Engineering and System Safety 75 (2002), pp.333-357.


[10] American Society of Mechanical Engineers. Guide for Verification and Validation in Computational Solid Mechanics. Vol. 10. ASME V and V. New York, (2006).

[11] O. De Weck, C. Eckert, and P. J. Clarkson. A classification of uncertainty for early product and system design,. In: 16th International Conference on Engineering Design (Paris). (2007).

[12] A. Alves de Campos and E. Henriques. Identification, Classification and Modeling Uncertainty in Early Stage Design of Manufacturing Systems - A Survey,. In: 7th International Conference on Mechanics and Materials in Design (Albufeira). INEGI/FEUP, (2017).

[13] E. Hollnagel. Prologue: The Scope of Resilience Engineering,. In: Resilience Engineering in Practice: A Guidebook. Ed. by E. Hollnagel, J. Pariès, D. D. Woods, and J. Wreathall. Ashgate Studies in Resilience Engineering. Boca Raton, Florida: CRC Press, 2011, pp. xxix-xxxix.


[14] E. Hollnagel, D. Woods, and N. Leveson. Resilience Engineering: Concepts and Precepts. Aldershot: Ashgate Publishing, Limited, (2007).

[15] W. Gauchel and M. Wiegand. Automated Commissioning of Pneumatic Systems,. In: 11th International Fluid Power Conference (Aachen). Vol. 3. 2018, pp.342-350.

[16] J. Gray. Why Do Computers Fail and What Can Be Done About It? Tech. rep. Tandem Computers, (1985).

[17] K. Ehrlenspiel. Integrierte Produktentwicklung. München: Carl Hanser Verlag, (2009).

[18] ] Gabler Wirtschaftslexikon. Agile Softwareentwicklung. 2018. url: https : / / wirtschafts lexikon . gabler . de / definition / agile - softwareentwicklung - 53460 (visited on 03/30/2018).

[19] K. Beck et al. The Agile Manifesto. 2001. url: (visited on 03/30/2018).

[20] R. G. Cooper. Agile-Stage-Gate Hybrids,. In: Research-Technology Management 59.1 (2016), pp.21-29.

[21] E. Graves. Applying Agile to Hardware Development. 2016. url: https://www.playbookhq. co/blog/agileinhardwarenewproductdevelopment/ (visited on 03/30/2018).

[22] R. Isermann, J. Schaffnit, and S. Sinsel. Hardware-in-the-loop simulation for the design and testing of engine-control systems,. In: Control Engineering Practice 7.5 (1999), pp.643-653.


[23] P. Hedrich, M. Johe, and P. F. Pelz. Design and Realization of an Adjustable Fluid Powered Piston for an Active Air Spring,. In: 10th International Fluid Power Conference (Dresden). Vol. 1. 2016, pp.571-582.

[24] P. Hedrich, E. Lenz, N. Brötz, and P. F. Pelz. Active Pneumatic Suspension for Future Autonomous Vehicles: Design, Prove of Concept and Hardware-in-the-Loop Simulations,. In: 11th International Fluid Power Conference (Aachen). Vol. 3. 2018, pp.352-365.

[25] P. Hedrich, E. Lenz, and P. F. Pelz. Minimierung von Kinetose beim autonomen Fahren,. In: ATZ - Automobiltechnische Zeitschrift 120.7 (2018), pp.70-75.


[26] P. Hedrich, E. Lenz, and P. F. Pelz. Modellbildung, Regelung und experimentelle Untersuchung einer aktiven Luftfederung in einer Hardware-in-the-Loop-Simulationsumgebung,. In: VDIFachtagung Schwingungen (Nürtingen). VDI-Berichte. 2017, pp.447-460.

[27] E. Lenz, P. Hedrich, and P. F. Pelz. Aktive Luftfederung - Modellierung, Regelung und Hardware-in-the-Loop-Experimente,. In: Forschung in Ingenieurwesen (2018), pp.1-15.


[28] H. K. Müller. Hermetische Dichtungen,. In: Abdichtung bewegter Maschinenteile. Ed. by H. K. Müller. Waiblingen: Springer, 1990, pp.243-251.

[29] VDI 2057. Einwirkung mechanischer Schwingungen auf den Menschen - Blatt 1: GanzkörperSchwingungen. Berlin: Beuth Verlag, Sept. (2002).

[30] P. F. Pelz and R. Sonnenburg. Bestimmung komfortoptimaler Designparameter eines LuftFeder-Dämpfers im Fahrzeugmodell - Vergleich mit konventioneller hydraulischer Dämpfung,. In: VDI-Tagung Berechnung und Simulation in Fahrzeugbau 2004 (Würzburg). VDI Berichte. 2004, pp.527-542.