Enhanced Photocatalytic Degradation of Methylene Blue by Using Au-TiO2


Article Preview

In this work, Au-TiO2 nanoparticles (NPs) were synthesized in a single step by flame spray pyrolysis (FSP) method. X-ray diffraction (XRD) results indicated that phase structures of all samples TiO2 were the mixture of anatase and rutile phases. High resolution transmission electron microscopy (HRTEM) showed that dark spots of Au NPs deposited on larger TiO2 nanoparticles. HRTEM results indicated TiO2 NPs were average crystallite size in the range of 10–30 nm whereas the average diameter of Au NPs was about 5–10 nm. UV–Vis absorption spectroscopy technique showed peaks attributable of surface plasmon resonance (SPR) to Au NPs loaded on TiO2 in the wavelength of 500–630 nm. The Au-TiO2 NPs showed excellent photocatalytic activity for the degradation of methylene blue (MB) under UV-Vis irradiation. It was found that 0.25 mol% Au-TiO2 which was a better photocatalyst than others under the same reaction conditions. The results showed that Au NPs-loading could effectively improve the photocatalytic activities of TiO2.



Edited by:

Ruangdet Wongla




P. Jansanthea and W. Chomkitichai, "Enhanced Photocatalytic Degradation of Methylene Blue by Using Au-TiO2", Applied Mechanics and Materials, Vol. 886, pp. 107-113, 2019

Online since:

January 2019




* - Corresponding Author

[1] N.R. Khalid, E. Ahmed, Z. Hong, L. Sana, M. Ahmed, Enhanced photocatalytic activity of graphene–TiO2 composite under visible light irradiation, Curr. Appl. Phys. 13 (2013) 659–663.

DOI: https://doi.org/10.1016/j.cap.2012.11.003

[2] T. Nogawa, T. Isobe, S. Matsushita, A. Nakajima, Preparation and visible-light photocatalytic activity of Au- and Cu-modified TiO2 powders, Mater. Lett. 82 (2012) 174–177.

DOI: https://doi.org/10.1016/j.matlet.2012.05.031

[3] N. Wetchakun, S. Chainet, S. Phanichphant, K. Wetchakun, Efficient photocatalytic degradation of methylene blue over BiVO4/TiO2 nanocomposites, Ceram. Int. 41 (2015) 5999–6004.

DOI: https://doi.org/10.1016/j.ceramint.2015.01.040

[4] N. Boonprakob, W. Chomkitichai1, J. Ketwaraporn, A. Wanaek, B. Inceesungvorn, S. Phanichphant, Photocatalytic degradation of phenol over highly visible-light active BiOI/TiO2 nanocomposite photocatalyst, Eng. J. 21 (2017) 81–91.

DOI: https://doi.org/10.4186/ej.2017.21.1.81

[5] R.J. Tayade, T.S. Natarajan, H.C. Bajaj, Photocatalytic degradation of methylene blue dye using ultraviolet light emitting diodes, Ind. Eng. Chem. Res. 48 (2009) 10262–10267.

DOI: https://doi.org/10.1021/ie9012437

[6] R. Amrollahi, M. S. Hamdy, G. Mul, Understanding promotion of photocatalytic activity of TiO2 by Au nanoparticles, J. Catal. 319 (2014) 194–199.

DOI: https://doi.org/10.1016/j.jcat.2014.08.017

[7] Y. Lan, Y. Lu, Z. Ren, Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications, Nano Energy. 2 (2013) 1031–1045.

DOI: https://doi.org/10.1016/j.nanoen.2013.04.002

[8] T. Sun, E. Liu, J. Fan, X. Hu, F. Wu, W. Hou, Y. Yang, L. Kang, High photocatalytic activity of hydrogen production from water over Fe doped and Ag deposited anatase TiO2 catalyst synthesized by solvothermal method, Chem. Eng. J. 228 (2013) 896–906.

DOI: https://doi.org/10.1016/j.cej.2013.04.065

[9] H. Ninsonti, S. Sriwichai, N. Wetchakun, W. Kangwansupamonkon, S. Phanichphant, Au-loaded TiO2 and Ag-loaded TiO2 synthesized by modified sol–gel/impregnation method as photocatalysts, Jpn. J. Appl. Phys. 55 (2016) 02BC01– 02BC05.

DOI: https://doi.org/10.7567/jjap.55.02bc05

[10] J. Dong, J. Ye, D. Ariyanti, Y. Wang, S. Wei, W. Gao, Enhancing photocatalytic activities of titanium dioxide via well-dispersed copper nanoparticles, Chemosphere. 204 (2018) 193– 201.

DOI: https://doi.org/10.1016/j.chemosphere.2018.04.012

[11] P. Wang, C. Peng, M. Yang, Ag decorated 3D urchin-like TiO2 microstructures synthesized via a one-step solvothermal method and their photocatalytic activity, J. Alloys Compd. 648 (2015) 22–28.

DOI: https://doi.org/10.1016/j.jallcom.2015.06.244

[12] G.K. Naik, P.M. Mishra, K. Parida, Green synthesis of Au/TiO2 for effective dye degradation in aqueous system, Chem. Eng. J. 229 (2013) 492–497.

DOI: https://doi.org/10.1016/j.cej.2013.06.053

[13] J. Yu, L. Yue, S. Liu, B. Huang, X. Zhang, Hydrothermal preparation and photocatalytic activity of mesoporous Au–TiO2 nanocomposite microspheres, J. Colloid Interface Sci. 334 (2009) 58–64.

DOI: https://doi.org/10.1016/j.jcis.2009.03.034

[14] H. Saito, Y. Nosaka, Enhancement of the generation of photocatalytic active species by loading copper ions on gold-nanoparticle-deposited titanium dioxide, Catal. Commun. 61 (2015) 117–120.

DOI: https://doi.org/10.1016/j.catcom.2014.12.024

[15] M.T. Islam, H. Jing, T. Yang, E. Zubia, A.G. Goos, R.A. Bernal, C.E. Botez, M. Narayan, C.K. Chan, J.C. Noveron, Fullerene stabilized gold nanoparticles supported on titanium dioxide for enhanced photocatalytic degradation of methyl orange and catalytic reduction of 4-nitrophenol, J. Environ. Chem. Eng. 6 (2018) 3827–3836.

DOI: https://doi.org/10.1016/j.jece.2018.05.032

[16] W. Chomkitichai, N. Tamaekong, C. Liewhiran, A. Wisitsoraat, S. Sriwichai, S. Phanichphant, H2 sensor based on Au/TiO2 nanoparticles synthesized by flame spray pyrolysis, Eng. J. 16 (2012) 135–142.

DOI: https://doi.org/10.4186/ej.2012.16.3.135

[17] W. Wang, M. Lai, J. Fang, C. Lu, Au and Pt selectively deposited on {001}-faceted TiO2 toward SPR enhanced photocatalytic Cr (VI) reduction: The influence of excitation wavelength, Appl. Surf. Sci. 439 (2018) 430–438.

DOI: https://doi.org/10.1016/j.apsusc.2017.12.249

[18] S.M. Yoo, S.B. Rawal, J.E. Lee, J. Kim, H.Y. Ryu, D.W. Park, W.I. Lee, Size-dependence of plasmonic Au nanoparticles in photocatalytic behavior of Au/TiO2 and Au@SiO2/TiO2, Appl. Catal., A. 499 (2015) 47–54.

DOI: https://doi.org/10.1016/j.apcata.2015.04.003

[19] X. Huang, M.A. El-Sayed, Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy, Chin. J. Catal. 39 (2018) 1219–1227.

[20] Y. Gao, X. Fan, W. Zhang, Q. Zhao, G. Zhang, F. Zhang, Y. Li, Enhanced photocatalytic degradation of methyl orange by Au/TiO2 nanotubes, Mater. Lett. 130 (2014) 1–4.

[21] Y. Chen, J. Wang, W. Li, M. Ju, Microwave-assisted hydrothermal synthesis of Au/TiO2/ SBA-15 for enhanced visible-light photoactivity, Mater. Lett. 159 (2015) 131–134.

[22] K. Qian, B.C. Sweeny, A.C. Johnston-Peck, W. Niu, J.O. Graham, J.S. DuChene, J. Qiu, Y.C. Wang, M.H. Engelhard, D. Su, E.A. Stach, W.D. Wei, Surface plasmon-driven water reduction: gold nanoparticle size matters, J. Am. Chem. Soc. 136 (2014) 9842–9845.

DOI: https://doi.org/10.1021/ja504097v

[23] A. Gołabiewska, W. Lisowski, M. Jarek, G. Nowaczyk, M. Michalska, S. Jurga, A. Zaleska-Medynska, The effect of metals content on the photocatalytic activity of TiO2 modified by Pt/Au bimetallic nanoparticles prepared by sol-gel method, Mol. Catal. 442 (2017) 154–163.

DOI: https://doi.org/10.1016/j.mcat.2017.09.004

[24] B. Gupta, A.A. Melvin, T. Matthews, S. Dash, A.K. Tyagi, TiO2 modification by gold (Au) for photocatalytic hydrogen (H2) production, Renew. Sustain. Energy Rev. 58 (2016) 1366–1375.

[25] W. Chomkitichai, H. Ninsonti, A. Baba, S. Phanichphant, K. Shinbo, K. Kato, F. Kaneko, Multiple plasmonic effect on photocurrent generation of metal-loaded titanium dioxide composite/dye films on gold grating surface, Surf. Interface Anal. 46 (2014) 607–612.

DOI: https://doi.org/10.1002/sia.5577