Dye Mixtures Degradation by Multi-Phase BiVO4 Photocatalyst


Article Preview

The objective of this research was to prepare multi–phase bismuth vanadate (BiVO4) powder using the solvothermal method to be used as a photocatalyst. In the preparation step, bismuth nitrate and ammonium vanadate were used as the precursors with a mole ratio of 1:1. The mixed solution was diluted to 0.025 M with acetic acid and heated at 200 °C for 2 h in a Teflon–lined stainless steel autoclave vessel. Multi–phase BiVO4 was obtained without calcination step. Multi–phase BiVO4 was characterized by X–ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT–IR), and energy dispersive spectroscopy (EDS). The efficiency of multi–phase BiVO4 for photocatalytic degradation of the mixed dye of methylene blue (MB) and rhodamine B (RhB) solution under UV light irradiation was studied. The concentration of the mixed dye solution was measured by UV–Vis spectrophotometry (UV–Vis). The effect of concentration of catalyst and pH of solution was studied. The optimum conditions for photocatalytic degradation of mixed dye solution were obtained at 0.8 g/L for concentration of multi–phase BiVO4 and 7.78 for initial pH of the mixed dye solution.



Edited by:

Ruangdet Wongla




W. Chomkitichai et al., "Dye Mixtures Degradation by Multi-Phase BiVO4 Photocatalyst", Applied Mechanics and Materials, Vol. 886, pp. 138-145, 2019

Online since:

January 2019




* - Corresponding Author

[1] W. Yin, W. Wang, L. Zhou, S. Sun, L. Zhang, CTAB–assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient degradation of organic dye under visible–light irradiation, J. Hazard. Mater. 173 (2010) 194–199.

DOI: https://doi.org/10.1016/j.jhazmat.2009.08.068

[2] H. Jiang, H. Dai, X. Meng, K. Ji, L. Zhang, J. Deng, Porous olive–like BiVO4: Alcoho–hydrothermal preparation and excellent visible–light–driven photocatalytic performance for the degradation of phenol, Appl. Catal. B–Environ. 105 (2011) 326–334.

DOI: https://doi.org/10.1016/j.apcatb.2011.04.026

[3] S. Obregón, G. Colón, On the different photocatalytic performance of BiVO4 catalysts for methylene blue and rhodamine B degradation, J. Mol. Catal. A–Chem. 376 (2013) 40–47.

DOI: https://doi.org/10.1016/j.molcata.2013.04.012

[4] M. Xie, L. Jing, J. Zhou, J. Lin, H. Fu, Synthesis of nanocrystalline anatase TiO2 by one–pot two–phase separated hydrolysis–solvothermal processes and its high activity for photocatalytic degradation of rhodamine B, J. Hazard. Mater.176 (2010) 139–145.

DOI: https://doi.org/10.1016/j.jhazmat.2009.11.008

[5] G. Li, Y. Bai, W.F. Zhang, Difference in valence band top of BiVO4 with different crystal structure, Mater. Chem. Phys. 136 (2012) 930–934.

DOI: https://doi.org/10.1016/j.matchemphys.2012.08.023

[6] S.S. Dunkle, R.J. Helmich, K.S. Suslick, BiVO4 as a visible–light photocatalyst prepared by ultrasonic spray pyrolysis, J. Phys. Chem. C. 113 (2009) 11980–11983.

DOI: https://doi.org/10.1021/jp903757x

[7] X. Wang, G. Li, J. Ding, H. Peng, K. Chen, Facile synthesis and photocatalytic activity of monoclinic BiVO4 micro/nanostructures with controllable morphologies, Mater. Res. Bull. 47 (2012) 3814–3818.

DOI: https://doi.org/10.1016/j.materresbull.2012.04.082

[8] A. Zhang, J. Zhang, Characterization of visible–light–driven BiVO4 photocatalysts synthesized via a surfactant–assisted hydrothermal method, Spectrochim. Acta A. 73 (2009) 336–341.

DOI: https://doi.org/10.1016/j.saa.2009.02.028

[9] L. Shen, N. Bao, K. Yanagisawa, A. Gupta, K. Domen, C.A. Grimes, Controlled synthesis and assembly of nanostructured ZnO architectures by a solvothermal soft chemistry process, Cryst. Growth Des. 7(12) (2007) 2742–2748.

DOI: https://doi.org/10.1021/cg0705409

[10] K. Byrappa, T. Adschiri, Hydrothermal technology for nanotechnology, Prog. Cryst. Growth Ch. 53 (2007) 117–166.

[11] M.K. Devaraju, S. Yin, T. Sato, Morphology control of cerium oxide particles synthesized via a supercritical solvothermal method, Acs. Appl. Mater. Inter. 1(11) (2009) 2694–2698.

DOI: https://doi.org/10.1021/am900574m

[12] P. Jansanthea, P. Pookmanee, S. Phaisansuthichol, S. Satienperakul, S. Sangsrichan, R. Puntharod, S. Phanichphant, BiVO4 powder synthesized via the solvothermal method, Adv. Mater. Res. 931–932 (2014) 157–161.

DOI: https://doi.org/10.4028/www.scientific.net/amr.931-932.157

[13] M.F. Aldersley, P.C. Joshi, J.D. Price, J.P. Ferris, The role of montmorillonite in its catalysis of RNA synthesis, Appl. Clay Sci. 54(1) (2011) 1–14.

DOI: https://doi.org/10.1016/j.clay.2011.06.011

[14] S. Sarkar, K.K. Chattopadhyay, Size–dependent optical and dielectric properties of BiVO4 nanocrystals, Physica E. 44 (2012) 1742–1746.

DOI: https://doi.org/10.1016/j.physe.2011.11.019

[15] S. Obregón, A. Caballero, G. Colón, Hydrothermal synthesis of BiVO4: Structural and morphological influence on the photocatalytic activity, Appl. Catal. B–Environ. 117–118 (2012) 59–66.

DOI: https://doi.org/10.1016/j.apcatb.2011.12.037

[16] A. Zhang, J. Zhang, Hydrothermal processing for obtaining of BiVO4 nanoparticles, Mater. Lett. 63(22) (2009) 1939–(1942).

[17] L. Zhou, W. Wang, S. Liu, L. Zhang, H. Xu, W. Zhu, A sonochemical route to visible–light–driven high–activity BiVO4 photocatalyst, J. Mol. Catal. A–Chem. 252(1–2) (2006) 120–124.

DOI: https://doi.org/10.1016/j.molcata.2006.01.052

[18] L. Ma, W.–H. Li, J.–H. Luo, Solvothermal synthesis and characterization of well–dispersed monoclinic olive–like BiVO4 aggregates, Mater. Lett. 102–103 (2013) 65–67.

DOI: https://doi.org/10.1016/j.matlet.2013.03.111

[19] U.M.G. Pérez, S.S. Guzmán, A.M.–de la Cruz, U.O. Méndez, Photocatalytic activity of BiVO4 nanospheres obtained by solution combustion synthesis using sodium carboxymethylcellulose, J. Mol. Catal. A–Chem. 335 (2011) 169–175.

DOI: https://doi.org/10.1016/j.molcata.2010.11.030

[20] S.–C. Yu, C.–W. Huang, C.–H. Liao, J.C.S. Wu, S.–T. Chang, K.–H. Chen, A novel membrane reactor for separating hydrogen and oxygen in photocatalytic water splitting, J. Membrane Sci. 382 (2011) 291–299.

DOI: https://doi.org/10.1016/j.memsci.2011.08.022

[21] Y. Zhang, G. Li, X. Yang, H. Yang, Z. Lu, R. Chen, Monoclinic BiVO4 micro–/nanostructures: Microwave and ultrasonic wave combined synthesis and their visible–light photocatalytic activities, J. Alloy. Compd. 551 (2013) 544–550.

DOI: https://doi.org/10.1016/j.jallcom.2012.11.017

[22] C.–H. Chiou, C.–Y. Wu, R.–S. Juang, Photocatalytic degradation of phenol and m–nitrophenol using irradiated TiO2 in aqueous solutions. Sep. Purif. Technol. 62 (2008) 559–564.

DOI: https://doi.org/10.1016/j.seppur.2008.03.009

[23] H.–F. Lai, C.–C. Chen, Y.–K. Chang, C.–S. Lu, R.–J. Wu. Efficient photocatalytic degradation of thiobencarb over BiVO4 driven by visible light: Parameter and reaction pathway investigations. Sep. Purif. Technol. 122 (2014) 78–86.

DOI: https://doi.org/10.1016/j.seppur.2013.10.049

[24] F. Sayilkan, M. Asiltürk, S. Erdemoğlu, M. Akarsu, H. Sayilkan, M. Erdemoğlu, E. Arpaç, Characterization and photocatalytic properties of TiO2–nanosols synthesized by hydrothermal process at low temperature, Mater. Lett. 60 (2006) 230–235.

DOI: https://doi.org/10.1016/j.matlet.2005.08.023

[25] Y.–C. Lu, C.–C. Chen, C.–S. Lu, Photocatalytic degradation of bis(2–chloroethoxy)methane by a visible light–driven BiVO4 photocatalyst, J. Taiwan Inst. Chem. E. 45(3) (2014) 1015–1024.

DOI: https://doi.org/10.1016/j.jtice.2013.08.005

[26] A. H. Abdullah, H.J.M. Moey, N.A. Yusof, Response surface methodology analysis of the photocatalytic removal of Methylene Blue using bismuth vanadate prepared via polyol route, J. Environ. Sci. 24(9) (2012) 1694–1701.

DOI: https://doi.org/10.1016/s1001-0742(11)60966-2

[27] L. Zhang, J. Long, W. Pan, S. Zhou, J. Zhu, Y. Zhao, X. Wang, G. Cao, Efficient removal of methylene blue over composite–phase BiVO4 fabricated by hydrothermal control synthesis, Mater. Chem. Phys. 136(2–3) (2012) 897–902.

DOI: https://doi.org/10.1016/j.matchemphys.2012.08.016