Comparator Synthesis Using Distributed Genetic Algorithm and HSPICE Optimization

Abstract:

Article Preview

In this paper, we propose an automatic design method that determines comparator topology and satisfies desired specification of the comparator by combining distributed genetic algorithm and HSPICE optimization function.In the comparator synthesis, new topology is created using known circuit topology information.After creating the topology, optimization of element values of the comparator is executed by distributed genetic algorithm and HSPICE optimization.As a target value example, specification of HA163S02 is used.Simulation results indicate that the proposed method can design the comparator despite the number of specifications and elements of circuit increase compared to the conventional methods.Furthermore, the performance of the automatic designed comparator is better than that of conventional comparators.

Info:

Periodical:

Edited by:

Osamu Hanaizumi

Pages:

17-28

Citation:

N. Takai et al., "Comparator Synthesis Using Distributed Genetic Algorithm and HSPICE Optimization", Applied Mechanics and Materials, Vol. 888, pp. 17-28, 2019

Online since:

February 2019

Export:

Price:

$41.00

* - Corresponding Author

[1] G. Gielen, H. Walscharts, and W. Sansen, Analog circuit design optimization based on symbolic simulation and simulated annealing,, IEEE Journal of Solid-State Circuits, vol. 25, no. 3, pp.707-713, Jun. (1990).

DOI: https://doi.org/10.1109/4.102664

[2] K. Swings and W. Sansen, DONALD: a workbench for interactive design space exploration and sizing of analog circuits,, in Proceedings of the European Conference on Design Automation, Feb. 1991, pp.475-479.

DOI: https://doi.org/10.1109/edac.1991.206451

[3] J. Harvey, M. Elmasry, and B. Leung, STAIC: an interactive framework for synthesizing CMOS and BiCMOS analog circuits,, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 11, no. 11, pp.1402-1417, Nov. (1992).

DOI: https://doi.org/10.1109/43.177403

[4] P. Maulik, L. Carley, and D. Allstot, Sizing of cell-level analog circuits using constrained optimization techniques,, IEEE Journal of Solid-State Circuits, vol. 28, no. 3, pp.233-241, Mar. (1993).

DOI: https://doi.org/10.1109/4.209989

[5] C. Makris and C. Toumazou, Analog IC design automation. II. automated circuit correction by qualitative reasoning,, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 14, no. 2, pp.239-254, Feb. (1995).

DOI: https://doi.org/10.1109/43.370423

[6] F. Medeiro, F. Fernandez, R. Dominguez-Castro, and A. Rodriguez-Vazquez, A statistical optimization-based approach for automated sizing of analog cells,, in IEEE/ACM International Conference on Computer-Aided Design, Nov. 1994, pp.594-597.

DOI: https://doi.org/10.1109/iccad.1994.629881

[7] E. Ochotta, R. Rutenbar, and L. Carley, Synthesis of high-performance analog circuits in ASTRX/OBLX,, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 15, no. 3, pp.273-294, Mar. (1996).

DOI: https://doi.org/10.1109/43.489099

[8] C. Toumazou and C. Makris, Analog IC design automation. I. automated circuit generation: new concepts and methods,, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 14, no. 2, pp.218-238, Feb. (1995).

DOI: https://doi.org/10.1109/43.370422

[9] M. del Mar Hershenson, S. Boyd, and T. Lee, GPCAD: a tool for CMOS op-amp synthesis,, in IEEE/ACM International Conference on Computer-Aided Design, Nov. 1998, pp.296-303.

DOI: https://doi.org/10.1145/288548.288628

[10] M. Krasnicki, R. Phelps, R. Rutenbar, and L. Carley, MAELSTROM: efficient simulationbased synthesis for custom analog cells,, in Proceedings of 36th Design Automation Conference, 1999, pp.945-950.

DOI: https://doi.org/10.1109/dac.1999.782233

[11] R. Phelps, M. Krasnicki, R. Rutenbar, L. Carley, and J. Hellums, Anaconda: simulation-based synthesis of analog circuits via stochastic pattern search,, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 19, no. 6, pp.703-717, Jun. (2000).

DOI: https://doi.org/10.1109/43.848091

[12] G. Alpaydin, S. Balkir, and G. Dundar, An evolutionary approach to automatic synthesis of high-performance analog integrated circuits,, IEEE Transactions on Evolutionary Computation, vol. 7, no. 3, pp.240-252, June (2003).

DOI: https://doi.org/10.1109/tevc.2003.808914

[13] R. Castro-Lopez, O. Guerra, E. Roca, and F. Fernandez, An integrated layout-synthesis approach for analog ICs,, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 7, pp.1179-1189, July (2008).

DOI: https://doi.org/10.1109/tcad.2008.923417

[14] A. Pradhan and R. Vemuri, Efficient synthesis of a uniformly spread layout aware pareto surface for analog circuits,, in International Conference on VLSI Design, Jan. 2009, pp.131-136.

DOI: https://doi.org/10.1109/vlsi.design.2009.67

[15] C. W. Lin, P. D. Sue, Y. T. Shyu, and S. J. Chang, A bias-driven approach for automated design of operational amplifiers,, in International Symposium on VLSI Design, Automation and Test, Apr. 2009, pp.118-121.

DOI: https://doi.org/10.1109/vdat.2009.5158109

[16] L. N. and H. N. H., GENOM-POF: Multi-objective evolutionary synthesis of analog ICs with corners validation,, in roc Genetic and Evolutionary Computation Conf. - GECCO, July 2012, pp.1119-1126.

DOI: https://doi.org/10.1145/2330163.2330318

[17] T. Negishi, N. Arai, N. Takai, M. Kato, H. Seki, S. K. Biswas, and H. Kobayashi, Automatic synthesis of comparator circuit using genetic algorithm,, in The 4th IEICE International Conference on Integrated Circuits Design and Verification, Nov. 2013, pp.116-121.

DOI: https://doi.org/10.4028/www.scientific.net/kem.643.131

[18] R. Harjani, R. Rutenbar, and L. Carley, OASYS: a framework for analog circuit synthesis,, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 8, no. 12, pp.1247-1266, Dec. (1989).

DOI: https://doi.org/10.1109/43.44506

[19] F. El-Turky and E. Perry, BLADES: an artificial intelligence approach to analog circuit design,, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 8, no. 6, pp.680-692, Jun. (1989).

DOI: https://doi.org/10.1109/43.31523

[20] H. Y. Koh, C. Sequin, and P. Gray, OPASYN: A compliler for CMOS operational amplifiers,, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 9, no. 2, pp.113-125, Feb. (1990).

DOI: https://doi.org/10.1109/43.46777

[21] Z.-Q. Ning, T. Mouthaan, and H. Wallinga, SEAS: a simulated evolution approach for analog circuit synthesis,, in Proceedings of the IEEE 1991 Custom Integrated Circuits Conference, May 1991, p.5.2-1-4.

DOI: https://doi.org/10.1109/cicc.1991.164025

[22] H. Chang, A. Sangiovanlli-Vincentelli, F. Balarin, E. Charbon, U. Choudhury, G. Jusuf, E. Liu, E. Malavasi, R. Neff, and P. Gray, A top-down, constraint-driven design methodology for analog integrated circuits,, in Proceedings of the IEEE 1992 Custom Integrated Circuits Conference, May 1992, p.8.4.1-8.4.6.

DOI: https://doi.org/10.1109/cicc.1992.591162

[23] P. Maulik, L. Carley, and R. Rutenbar, Integer programming based topology selection of celllevel analog circuits,, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 14, no. 4, pp.401-412, Apr. (1995).

DOI: https://doi.org/10.1109/43.372366

[24] W. Kruiskamp and D. Leenaerts, DARWIN: CMOS opamp synthesis by means of a genetic algorithm,, in Proceedings of the 32Nd Annual ACM/IEEE Design Automation Conference. New York, NY, USA: ACM, 1995, pp.433-438.

DOI: https://doi.org/10.1145/217474.217566

[25] A. Torralba, J. Chavez, and L. Franquelo, Fuzzy-logic-based analog design tools,, IEEE Micro, vol. 16, no. 4, pp.60-68, Aug. (1996).

DOI: https://doi.org/10.1109/40.526926

[26] J. R. Koza, I. Bennett, F.H., D. Andre, M. A. Keane, and F. Dunlap, Automated synthesis of analog electrical circuits by means of genetic programming,, IEEE Transactions on Evolutionary Computation, vol. 1, no. 2, pp.109-128, Jul. (1997).

DOI: https://doi.org/10.1109/4235.687879

[27] H. Shibata and N. Fujii, An evolutionary synthesis of analog active circuits using current path based coding,, IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, vol. E84-A, no. 10, pp.2561-2568, Oct. (2001).

[28] --, Analog circuit synthesis based on reuse of topological features of prototype circuits,, IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, vol. E84-A, no. 11, pp.2778-2784, Nov. (2001).

[29] T. Sripramong and C. Toumazou, The invention of cmos amplifiers using genetic programming and current-flow analysis,, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 21, no. 11, pp.1237-1252, Nov. (2002).

DOI: https://doi.org/10.1109/tcad.2002.804109

[30] H. Shibata, S. Mori, and N. Fujii, Automated design of analog circuits using a cell-based structure,, IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, vol. E86-A, no. 2, pp.364-370, Feb. (2003).

[31] N. Unno and N. Fujii, Automated design of analog circuits accelerated by use of simplified MOS model and reuse of genetic operations,, IEICE TRANSACTIONS on Electronics, vol. E90- C, no. 6, pp.1291-1298, Jun. (2007).

DOI: https://doi.org/10.1093/ietele/e90-c.6.1291

[32] C. Mattiussi and D. Floreano, Analog genetic encoding for the evolution of circuits and networks,, IEEE Transactions on Evolutionary Computation, vol. 11, no. 5, pp.596-607, Oct. (2007).

DOI: https://doi.org/10.1109/tevc.2006.886801

[33] P. Palmers, T. McConnaghy, M. Steyaert, and G. Gielen, Massively multi-topology sizing of analog integrated circuits," in Design, Automation Test in Europe Conference Exhibition, 2009. DATE ,09., Apr. 2009, pp.706-711.

DOI: https://doi.org/10.1109/date.2009.5090756

[34] T. McConaghy, P. Palmers, M. Steyaert, and G. Gielen, Trustworthy genetic programmingbased synthesis of analog circuit topologies using hierarchical domain-specific building blocks,, IEEE Transactions on Evolutionary Computation, vol. 15, no. 4, pp.557-570, Aug. (2011).

DOI: https://doi.org/10.1109/tevc.2010.2093581

[35] K. Suzuki, T. Negishi, M. Kato, H. Seki, Y. Sugawara, N. Takai, and H. Kobayashi, Automatic synthesis of comparator circuits by combination of genetic algorithm and HSPICE optimization function,, in Papers of Technical Meeting on Electronic circuits, ECT-15-14, IEE Japan, Jan. (2015).

DOI: https://doi.org/10.1109/asicon.2015.7516958

[36] Renesas, "HA1631S01/02/03/04 series", http://documentation.renesas.com..

[37] B. Razavi, Design of Analog CMOS Integrated Circuits. McGraw-Hill, (2001).