In-Process Simulation of Multi-Axis Milling in the Production of Lightweight Structures


Article Preview

Lightweight structures are an important element in today’s production industry. For the multi-axis milling of these structures some aspects have to be considered to achieve a good surface quality and to prevent damaging the milling machine during the machining process. In this article methods to determine suitable feed rates for the milling process, to identify parts of the workpiece with too much heat build-up, and to avoid collisions between workpiece and machine parts are presented. For this purpose a milling simulation based on a multi-dexel field workpiece model has been developed, in which two types of feed rate adaptation have been integrated. Work on a built-in temperature development simulation and collision control is in progress.



Edited by:

Matthias Kleiner, Jürgen Fleischer, Michael Zäh and Marco Schikorra




E. Ungemach et al., "In-Process Simulation of Multi-Axis Milling in the Production of Lightweight Structures", Advanced Materials Research, Vol. 10, pp. 111-120, 2006

Online since:

February 2006




[1] Kleiner, M.; Klaus, A.: Forschung für die flexible Produktion leichter Rahmenstrukturen Aluminium, International Journal for Industry, Research and Application, Volume 80 12 / December 2004, pp.1364-1366.

[2] Klocke, F.; Altmüller, S.: Five-Axis Milling: Geometrical and Technological Benefits for High Efficiency Processes. Product Engineering - Research and Development in Germany, Annals of the WGP (Wissenschaftliche Gesellschaft für Produktionstechnik) Vol. V/1, pp.1-5, Hanser-Verlag, München, (1998).

[3] Jerard, R.B.; Hussaini, S.Z.; Drysdale, R.L.; Schaudt, B.: Approximate methods for simulation and verification of numerically controlled machining programs. The Visual Computer (1989) 5, 6, pp.329-348.


[4] v. Hook, T.: Real-time shaded NC milling display. Proceedings ACM SIGGRAPH Conference (1986), Vol. 20, No. 4, pp.15-20.


[5] Weinert, K.; Müller, H.; Friedhoff, J.: Efficient discrete simulation of 3-axis milling. Product Engineering - Research and Development in Germany, Annals of the WGP (Wissenschaftliche Gesellschaft für Produktionstechnik) Vol. III/2, pp.83-88, Hanser-Verlag, München, (1996).

[6] Foley, J. D.; Van Dam, A; Feiner, S.K.; Hughes, J. F.: Computer Graphics, Principles and Practice. Addison-Wesley Professional, (1995).

[7] Weinert, K.; Guntermann, G.; Stautner, M.: Effiziente Simulation der 5-Achsen-SimultanFräsbearbeitung. In: Begleitband zum 3D-Erfahrungsforum, WB Werkstatt und Betrieb, Darmstadt 2001, pp.197-205.

[8] Müller, H.; Surmann, T; Stautner, M; Albersmann, F.; Weinert, K.: Online Sculpting and Visualization of Multi-Dexel Volumes. In: Elber, G.; Shapiro, V. (publisher): SM'03, Eighth ACM Symposium on Solid Modeling and Applications, Seattle, Washington, USA, ACM Press, NY, USA, 2003, pp.258-261.


[9] Bluestein, L. I.: A linear filtering approach to the computation of the discrete Fourier transform. Northeast Electronics Research and Engineering Meeting Record 10 , 1968 , pp.218-219.

[10] Lewis, R.W.; Nithiarasu, P.; Seetharamu, K.: Fundamentals of the Finite Element Method for Heat and Fluid Flow, J. Wiley & Sons, New York, (2004).


[11] Gottschalk, S., Lin, M.; Manocha, D.: OBB-Tree: A Hierarchical Structure for Rapid Interference Detection. Proc. ACM Siggraph '96, 1996, pp.171-180.

Fetching data from Crossref.
This may take some time to load.