Structural Behavior of an EN AW-6060 Profile during and Immediately after Welding by a Laser-Laser-Hybrid System


Article Preview

This paper describes the analysis of thermal and mechanical effects during welding and the following cooling-phase on a welded structure. An off-the-shelf aluminum-profile, as used in other simulation sub-projects of the research center, was chosen as a sample part for the simulation tests. Taking up an important production scenario of lightweight-production, the frontal closing of two profiles is modeled. The development of residual stresses and the distortion is investigated by a thermo-mechanical FE-simulation. The virtually examined process is provided by a hybrid, bifocal laser system consisting of both an Nd:YAG-laser and a high power diode laser (HPDL). For comparison, a single Nd:YAG-process was simulated, too. The theoretically different generation of residual stresses can be verified within the simulation.



Edited by:

Matthias Kleiner, Jürgen Fleischer, Michael Zäh and Marco Schikorra




M. F. Zäh and S. Roeren, "Structural Behavior of an EN AW-6060 Profile during and Immediately after Welding by a Laser-Laser-Hybrid System", Advanced Materials Research, Vol. 10, pp. 133-142, 2006

Online since:

February 2006




[1] K. -J. Bathe: Finite-Elemente-Methoden, 2nd edition (Springer, Berlin, 2002).

[2] V. R Davé, J. H. Cowles, D. S. Lindland, G. C. Shubert, W. Lin and D. A. Hartman: The Financial Impact of Weld Process Modeling, Welding Journal, December 2004, pp.24-27.

[3] H. Cerjak and H. K. D. H. Bhadeshia: Mathematical Modelling of Weld Phenomena 1-7, (Materials Modelling Series, Maney Publishing, London, 1993-2004).

[4] H. D. Baehr and K. Stephan: Waerme- und Stoffuebertragung, 3rd edition (Springer, Berlin, 1998).

[5] N. N. Rykalin: Berechnung der Waermevorgaenge beim Schweißen (VEB Verlag Technik, Berlin, 1957).

[6] D. Radaj: Heat Effects of Welding: Temperature Field, Residual Stress and Distortion, (Springer, Berlin, 1992).

[7] V. A. Lubarda: Elastoplasticity Theory, (CRC Press, Boca Raton, 2002).

[8] M. F. Zaeh, F. Auer and S. Roeren: Simulation of Laser Beam Welding Production Processes, in: Proc. of the 3 rd international CIMTEC Conference, (Technagroup, Acireale, 2004), pp.575-586.

[9] S. Roeren, A. Trautmann and M. F. Zaeh: Modelling of Transient Clamping Conditions during Laser Beam Welding, in: Proceedings of the Third International WLT-Conference on Lasers in Manufacturing 2005, Munich, June 2005, edited by E. Beyer, F. Dausinger, A. Ostendorf, A. Otto, pp.95-100.

[10] C. Hackmeier: Messung und numerische Simulation der Schweißverzuege an AluminiumFahrwerkskomponenten. PhD-Thesis, Technische Universität München, (2003).

[11] F. Auer: Methode zur Simulation des Laserstrahlschweißens unter Beruecksichtigung der Ergebnisse vorangegangener Umformsimulationen. PhD-Thesis, Technische Universität München, (2004).

[12] L. Papadakis and S. Roeren: Anwendungsnahe Modelle zur FEM-Berechnung des Verhaltens gefuegter Bauteile beim Laserstrahlschweißen, in: Proc. of the SYSWELD-Userforum 2005, Weimar, pp.37-47.

[13] Trautmann, A.; Zaeh, M. F.: Hybrid Bifocal Laser Welding of Aluminum, in: Proc. of ICALEO 2005, Miami, USA 31. 10. -3. 11. 2005, pp.153-162.

[14] O. C. Zienkiewicz: Finite Element Methods in Thermal Problems, in: Numerical Methods in heat transfer, edited by R. W. Lewis, K. Morgan and O. C. Zienkiewicz, Wiley and sons, NY, 1981, pp.1-26.

[15] M. F. Zäh, M. Kleiner, K. Weinert, S. Roeren, M. Schikorra, J. Mehnen, M. Stautner, C. Peters, M. Schulte, M. Kersting: Simulation von Prozessketten zur flexiblen Fertigung leichter Tragwerkstrukturen,. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb Vol. 99 (2004).


[16] SYSTUS Analysis Reference Manual, (ESI-Group, Paris, 2002).

[17] I. Szabo: Hoehere Technische Mechanik, 6th edition, (Springer, Berlin, 2001).

[18] M. F. Zäh, A. Trautmann: Vergleich des hybirden, bifokalen Laserschutzgasschweißens mit Laser-MIG-Hybridverfahren, in: Aluminium Vol. 12 (2004) 80, pp.1287-1391.