Laser Bifocal Hybrid Welding of Aluminum

Abstract:

Article Preview

This paper renders research into the fundamentals governing the melt pool dynamics of a hybrid bifocal laser welding system consisting of an Nd:YAG and a high power diode laser (HPDL). The resulting superposition of keyhole by heat conduction mode welding is assayed for extruded aluminum. In particular the diffusion of the surface oxygen layer is considered. By comparing the results attainable by bifocal laser hybrid welding to the constituent laser processes synergetic effects of the laser hybrid can be demonstrated. These are namely the doubling of the welding speed from 2.0 min-1 to 4.0 m min-1, the reduction of the roughness of the weld surface from 60 om to approximately 10 om and an increase in energy transfer efficiency. The experimental investigations verifying these synergies are outlined and discussed.

Info:

Periodical:

Edited by:

Matthias Kleiner, Jürgen Fleischer, Michael Zäh and Marco Schikorra

Pages:

65-78

DOI:

10.4028/www.scientific.net/AMR.10.65

Citation:

A. Trautmann and M. F. Zäh, "Laser Bifocal Hybrid Welding of Aluminum", Advanced Materials Research, Vol. 10, pp. 65-78, 2006

Online since:

February 2006

Export:

Price:

$35.00

[1] M.F. Zäh, A. Trautmann, A. et al.: Forschung als Motor der Leichtbau-Fügetechnik, in: Blech in Form, Vol. 2 (2004), pp.32-34.

[2] M.F. Zäh, A. Trautmann, et al.: Den Vorsprung sichern, in: Blech in Form, Vol. 5 (2004), pp.23-27.

[3] H. Zhao, D.R. White, T. DebRoy: Current issues and problems in laser welding of automotive aluminium alloys, in: Int. Mat. Rev., Vol. 44, No. 6 (1990), pp.238-266.

DOI: 10.1179/095066099101528298

[4] M.F. Zäh, A. Trautmann, D. Eireiner, S. Roeren: 19. Deutscher Montagekongress, München. Landsberg: Moderne Industrie 2005, p.3. 1-28.

[5] G. Mathers: The welding of aluminium and its alloys, Woodhead Publishing Ltd. Cambridge, UK (2002).

[6] S. Roeren, A. Trautmann, M.F. Zaeh: Modelling of Transient Clamping Conditions during Laser Beam Welding, in: Proceedings of the Third International WLT-Conference on Lasers in Manufacturing 2005, Munich, Germany (2005), pp.95-100.

[7] T. Graf, H. Staufer: LaserHybrid at Volkswagen, IIW-Doc. XII-1730-02.

[8] S. Katayama, Y. Naito, S. Uchiumi, M. Mizutani: Penetration and Porosity Prevention Mechanism in Laser-Arc Hybrid Welding, in: Proceedings of the Third International WLTConference on Lasers in Manufacturing 2005, Munich, Germany (2005).

DOI: 10.1109/cleoe.2005.1568437

[9] M.F. Zäh, A. Trautmann: Vergleich des hybriden, bifokalen Laserschutzgasschweißens mit Laser-MIG-Hybridverfahren, in: Aluminium 80, Vol. 12 (2005), pp.1387-1391.

[10] M. Leimser, F. Dausinger, H. Hügel: Melt pool dynamics and element distribution in laser welding of aluminium alloys with wire, in: Proceedings of the Third International WLTConference on Lasers in Manufacturing 2005, Munich, Germany (2005).

[11] C. Schinzel: Nd: YAG-Laserstrahlschweißen von Aluminiumwerkstoffen für Anwendungen im Automobilbau, Laser in der Materialbearbeitung, University of Stuttgart, Germany (2002).

[12] A. Trautmann, S. Roeren, M.F. Zaeh: Welding of Extruded Aluminium Profiles by a Hybrid Bifocal Laser System, in: Proc. of 4th LANE 2004, Erlangen, Germany, pp.169-180.

[13] N.N. Rykalin, A. Ugalov, I. Zuev, A. Kokara: Laser and electron beam material processing: handbook, Mir Publishers, Moscow (1988), pp.358-418.

[14] ISO 10042: 1992: Arc-welded joints in aluminium and its weldable alloys - Guidance on quality levels for imperfections.

DOI: 10.3403/00336587u

[15] ISO 13919-2: 2001: Welding - Electron and laser beam welded joints - Guidance on quality levels for imperfections - Part 2: Aluminium and its weldable alloys.

DOI: 10.3403/2380948u

[16] F. Dausinger: Strahlwerkzeug Laser: Energiekopplung und Prozesseffektivität. Laser in der Materialbearbeitung, Stuttgart, Germany (1995), pp.50-83.

[17] P.W. Fuerschbach: Welding Efficiency: Calorimetric and Temperature Field Measurements, in: Welding Journal (Miami), Vol. 75 (1996), pp.24-32.

[18] J. Berkmanns: (1998) Steigerung der Prozeßstabilität beim Laserstrahlschweißen von Aluminiumwerkstoffen mit Strahlleistungen bis 6 kW und Tragverhalten der Verbindungen, Berichte aus der Lasertechnik, University of Aachen, Germany.

[19] C. Ulrich, A. Trautmann: Methodische Wissensaufbereitung zur Planung von Fügeaufgaben, in Industriekolloquium Sonderforschungsbereich 582, Munich, Germany (2004), p.11. 1-10.

In order to see related information, you need to Login.