Investigation of the Influence of Process Parameters on the Structure and the Mechanical Properties of Joints Produced by Electromagnetic Compression


Article Preview

Electromagnetic Compression of tubular profiles with high electrical conductivity is an innovative joining process for light weight structures. The components are joined using pulsed magnetic fields which apply radial pressures of up to 200 MPa to tubular work pieces causing a symmetric reduction of the diameter with typical strain rates of about 104 sec-1. This process avoids any surface’s damage of the workpiece because there is no contact between the components and the forming tool. The load, which the joints can transmit, strongly depends on the process parameters. Of them, the charging energy and initial gap between components are the most important. In the present article, the influence of these two parameters on the joint’s characteristics, material’s microstructure and the mechanical properties is analyzed. The strength of the joint is determined by tensile tests and by measurements of the residual stresses. Finally, conclusions for the joint design are given.



Edited by:

Matthias Kleiner, Jürgen Fleischer, Michael Zäh and Marco Schikorra






V. Schulze et al., "Investigation of the Influence of Process Parameters on the Structure and the Mechanical Properties of Joints Produced by Electromagnetic Compression", Advanced Materials Research, Vol. 10, pp. 79-88, 2006

Online since:

February 2006




[1] M. Kleiner, D. Löhe, M. Marré, Ch. Beerwald, P. Barreiro, V. Schulze, W. Homberg: Investigation of force-fit joints produced by electromagnetic tube compression. Submitted by WGP-Annuals.

[2] Mamalis, D. Manolakos, A. Kladas, A. Koumoutsos: Electromagnetic forming and powder processing: Trends and developments. Applied Mechanics Reviews (2004) 57, pp.299-324.

DOI: 10.1115/1.1760766

[3] F. Bach, A. Rossberg, M. Schäperkötter, M. Schaper, L. Walden, J. Weber: The sheet metal materials aluminum, magnesium, steel and also titanium and their forming properties.

DOI: 10.1002/mawe.200400770

[4] F. Bach, M. Rodman, A. Rossberg, J. Weber, L. Walden: Verhalten von Aluminumwerkstoffen bei der elektromagnetischen Blechumformung. Proc. 2. Kolloq. Elektromagnetische Umformung, 28. Mai 2003, Dortmund, S. 11-18. 5. H. Bühler, E. Finkenstein: Hochsgeschwindigkeitsumformung rohrförmige Werkstücke durch magnetische Kräfte. Bänder, Bleche und Rohre (1966).

[6] H. Bühler, E. Finkenstein: Ein Beitrag zur Magnetumformung rohrförmige Werkstücke. Werkstatt und Betrieb (1968) 9, pp.513-516.

[7] H. Dietz, H. Lippman, H. Schenk: Theorie des Magnetforms-Verfaren: die Bewegung des Werkstückes. Elektronische Zeitschrift Ausgabe (1967), 12, pp.273-278.

[8] Beerwald: Grundlagen der Prozessauslegung und -gestaltung bei der elektromagnetischen Umformung. Universität Dortmund (2004).

[9] Beerwald, W. Brosius, M. Kleiner: Determination of flow stress at very high strain rates by a combination of magnetic forming and FEM calculation. Lehrstuhl für Umformtechnik (LFU) der Universität Dortmund.

[10] H. Dietz, H. Lippman, H. Schenk: Theorie des Magnetforms-Verfaren: Erreichbarer Druck. Elektronische Zeitschrift Ausgabe (1967), 9, pp.217-222.

[11] Beerwald, W. Homberg, M. Kleiner, M. Marré, V. Psyk: Einfluss der Umformgeschwindigkeit beim kraftschlüssigen Fügen rohrförmiger Werkstücke durch elektromagnetische Kompression , Symposium Fügetechnik 2004 Universität Paderborn, November.

In order to see related information, you need to Login.