Aspects of Ecodesign when Designing a Retort with Decreased Emissions in the Production of Biochar

Abstract:

Article Preview

The paper pinpoints the important aspects of ecodesign when designing a retort with decreased emissions in the production of biochar. When designing changes in the construction of equipment for the production of biochar, the requirements for minimum material and energy demands and the need to reduce emissions to the environment were taken into account. In the pyrolysis processes for the production of biochar, we mainly monitored the following inputs and outputs from/to the environment using life cycle analysis and ecodesign. When the decreasing emissions aspect was not included in an ecodesign, the measurements showed standard damage to the atmosphere characteristic for the production of biochar. The results of measuring emissions from the production of biochar in a retort with decreased emissions showed a significant decrease in emissions. Designs take into consideration the need to minimise the local materials available for the production of equipment for the production of biochar and the availability of raw materials for biochar (mainly accessible and suitable waste). The overall environmental profile (assessment) of biochar is improving based on this construction and conceptual design. Using such a strategic approach, other applications for ecodesign, inventory analysis and assessment of the life cycle of biochar are possible.

Info:

Periodical:

Edited by:

Juraj Ladomerský, Karol Balog, Jozef Martinka, Emília Hroncová and Janka Dibdiaková

Pages:

3-14

Citation:

J. Mitterpach et al., "Aspects of Ecodesign when Designing a Retort with Decreased Emissions in the Production of Biochar", Advanced Materials Research, Vol. 1001, pp. 3-14, 2014

Online since:

August 2014

Export:

Price:

$38.00

* - Corresponding Author

[1] D. Tonini and T. Astrup: LCA of biomass-based energy systems: A case study for Denmark, Appl. Energy Vol. 99 (2012), pp.234-246.

DOI: https://doi.org/10.1016/j.apenergy.2012.03.006

[2] Shie Je-Lueng, Ching-Yuan Chang, Ci-Syuan Chen, Dai-Gee Shaw, Yi-Hung Chen, Wen-Hui Kuan, Hsiao-Kan Ma: Energy life cycle assessment of rice straw bio-energy derived from potential gasification technologies. Bioresour. Technol. Vol. 102 (2011).

DOI: https://doi.org/10.1016/j.biortech.2011.02.116

[3] H.H. Khoo, C.Y. Koh, M.S. Shaik, P.N. Sharratt: Bioenergy co-products derived from microalgae biomass via thermochemical conversion – Life cycle energy balances and CO2 emissions, Bioresour. Technol. Vol. 143 (2013), pp.298-307.

DOI: https://doi.org/10.1016/j.biortech.2013.06.004

[4] G. Fiorentino, M. Ripa, S. Mellino, S. Fahd, S. Ulgiati: Life cycle assessment of Brassica carinata biomass conversion to bioenergy and platform chemicals, Journal of Cleaner Production, Vol. 66 (2014), pp.174-187.

DOI: https://doi.org/10.1016/j.jclepro.2013.11.043

[5] C. Pieragostini, P. Aguirre, M. C. Mussati: Life cycle assessment of corn-based ethanol production in Argentina, Sci. Total Environ. Vol. 472 (2014), pp.212-225.

DOI: https://doi.org/10.1016/j.scitotenv.2013.11.012

[6] T. Suramaythangkoor, S. H. Gheewala: Potential of practical implementation of rice straw-based power generation in Thailand, Energy Policy Vol. 36 (2008), pp.3193-3197.

DOI: https://doi.org/10.1016/j.enpol.2008.05.002

[7] N. Kauffman, D. Hayes, R. Brown: A life cycle assessment of advanced biofuel production from a hectare of corn, Fuel Vol. 90, (2011), pp.3306-3314.

DOI: https://doi.org/10.1016/j.fuel.2011.06.031

[8] R. Ibarrola, S. Shackley, J. Hammond: Pyrolysis biochar systems for recovering biodegradable materials: A life cycle carbon assessment, Waste Manage. Vol. 32 (2012), pp.859-868.

DOI: https://doi.org/10.1016/j.wasman.2011.10.005

[9] Thu Lan T. Nguyen, J. E. Hermansen, L. Mogensen: Environmental performance of crop residues as an energy source for electricity production: The case of wheat straw in Denmark, Appl. Energy Vol. 104 (2013), pp.633-641.

DOI: https://doi.org/10.1016/j.apenergy.2012.11.057

[10] Nur Zalikha Rebitanim, Wan Azlina Wan Ab Karim Ghani, Nur Akmal Rebitanim, Mohamad Amran Mohd Salleh: Potential applications of wastes from energy generation particularly biochar in Malaysia, Renewable and Sustainable Energy Rev. Vol. 21, (2013).

DOI: https://doi.org/10.1016/j.rser.2012.12.051

[11] Yun Tian, Xiangyang Sun, Suyan Li, Haiyan Wang, Lanzhen Wang, Jixin Cao, Lu Zhang, Biochar made from green waste as peat substitute in growth media for Calathea rotundifola cv. Fasciata, Scientia Horticulturae Vol. 143 (2012), pp.15-18.

DOI: https://doi.org/10.1016/j.scienta.2012.05.018

[12] Mohammad I. Al-Wabel, Abdulrasoul Al-Omran, Ahmed H. El-Naggar, Mahmoud Nadeem, A. R. A. Usman: Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes, Bioresour. Technol. Vol. 131 (2013).

DOI: https://doi.org/10.1016/j.biortech.2012.12.165

[13] EPA/600/R-99/109: Greenhouse Gases From Small-Scale Combustion Devices in Developing Countries: Charcoal-Making Kilns in Thailand, December (1999) http: /www. epa. gov/nrmrl/pubs/600r99109. html.

[14] Pro-Natura: Green-Charcoal, December (2004) http: /stoves. bioenergylists. org/stovesdoc/Martirena/GreenCharcoal%20Jan%202005%20compressed. pdf.

[15] D. Kammen, D. Lew: Review of Technologies for the Production and Use of Charcoal, University of California, Berkeley, California, USA, (2005).

[16] J.C. Adam: Report on the Mission to Build an ICPS (Improved Charcoal Production System) / adam-retort, for the Production of Sustainable Wood Charcoal, Gallmann Foundation, Kenya, (2005).

[17] J.C. Adam: Improved and more environmentally friendly charcoal production system using a low-cost retort–kiln (Eco-charcoal), Renewable Energy Vol. 34 (2009), p.1923–(1925).

DOI: https://doi.org/10.1016/j.renene.2008.12.009

[18] N. Müller, A. Michaelowa: Proposal for a new standardised baseline for charcoal projects in the Clean Development Mechanism, Zurich, December (2011) http: /cdm. unfccc. int/methodologies/standard_base/npbcharcoal. pdf.

[19] UNDP: Nationally Appropriate Mitigation Action Study on Sustainable Charcoal in Uganda, UNDP MDG Carbon, February 4 (2013) http: /mdgcarbonfacility. org/downloads/CharcoalNAMAstudy_9Jan2013. pdf.

[20] E. Hroncová, J. Ladomerský, Ch. Adam, A. Zacharová: A Project of Charcoal Production with Reduced Emissions and Environmental Engineering Education in the field. In. 3rd ICEEE International Scientific Conference OnEnvironmental Engineering, Budapest, Hungary Óbuda University Rejtő Sándor 20 – 23 November (2012).

[21] J. Ladomerský, E. Hroncová, I. Fremel: Perspective techniques of CO2 sequestration. In: 2nd International Conference PETrA 2013 (Pollution and Environment Treatment of Air), Prague, Czech Republic in June 4-6 (2013).

[22] J. Hammond, S. Shackley, S. Sohi, P. Brownsort: Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK, Energy Policy Vol. 39 (2011), pp.2646-2655.

DOI: https://doi.org/10.1016/j.enpol.2011.02.033

[23] Yu-Fong Huang, Fu-Siang Syu, Pei-Te Chiueh, Shang-Lien Lo: Life cycle assessment of biochar cofiring with coal, Bioresour. Technol. Vol. 131 (2013), pp.166-171.

DOI: https://doi.org/10.1016/j.biortech.2012.12.123

[24] J. Han, A. Elgowainy, J. B. Dunn, M. Q. Wang: Life cycle analysis of fuel production from fast pyrolysis of biomass, Bioresour. Technol. Vol. 133 (2013), pp.421-428.

DOI: https://doi.org/10.1016/j.biortech.2013.01.141

[25] T. Mattila, J. Grönroos, J. Judl, Marja-Riitta Korhonen: Is biochar or straw-bale construction a better carbon storage from a life cycle perspectiveN/A, Process Safety and Environmental Protection, Vol. 90 ( 2012), pp.452-458.

DOI: https://doi.org/10.1016/j.psep.2012.10.006

[26] O. Mašek, V. Budarin, M. Gronnow, K. Crombie, P. Brownsort, E. Fitzpatrick, P. Hurst: Microwave and slow pyrolysis biochar—Comparison of physical and functional properties, J. Anal. Appl. Pyrolysis Vol. 100 (2013), pp.41-48.

DOI: https://doi.org/10.1016/j.jaap.2012.11.015

[27] A. Downie, D. Lau, A. Cowie, P. Munroe: Approaches to greenhouse gas accounting methods for biomass carbon, Biomass and Bioenergy Vol. 60 (2014), pp.18-31.

DOI: https://doi.org/10.1016/j.biombioe.2013.11.009

[28] EC-JRC: General guide for Life Cycle Assessment—Detailed guidance. ILCD Handbook, European Union, (2010) at http: /lct. jrc. ec. europa. eu/pdf-directory/ILCD-Handbook-General-guide-for-LCA-DETAIL-online-12March2010. pdf.

[29] EC-JRC: Recommendations for life cycle impact assessment in the European context. ILCD Handbook, European Union, 2011, at http: /lct. jrc. ec. europa. eu/pdf-directory/ILCD%20Handbook%20Recommendations%20for%20Life%20Cycle%20Impact%20Assessment%20in%20the%20European%20context. pdf.

[30] J. Jeswiet, M. Hauschild: EcoDesign and future environmental impacts, Mater. Des. Vol. 26 (2005), pp.629-634.

DOI: https://doi.org/10.1016/j.matdes.2004.08.016

[31] F. Kurk, P. Eagan: The value of adding design-for-the-environment to pollution prevention assistance options, J. Cleaner Prod. Vol. 16 (2008), pp.722-726.

DOI: https://doi.org/10.1016/j.jclepro.2007.02.022

[32] ISO 14040: Environmental managements—life cycle assessments—principles and framework. International Organisation for Standardisation. Geneva (2006).

[33] ISO 14044: Environmental managements—life cycle assessments—requirements and guidelines. International Organisation for Standardisation. Geneva (2006).

[34] ISO/TR 14062: 2002, Environmental management - Integrating environmental aspects into product design and development, International Organisation for Standardisation. Geneva (2002).

[35] H. Brezet and C. V. Hemel: ECODESIGN-A PROMISING APPROACH to sustainable production and consumption (1997), UNEP. http: /www. unepie. org/ home. html.

[36] Kun-Mo Lee: ECODESIGN Best Practice of ISO/TR 14062, Eco-product Research Institute (ERI), Ajou University, Committee on Trade and Investment Ministry of Commerce, Industry and Energy Republic of Korea (2005).

[37] J.C. Adam: Design, construction and emissions of a carbonization system including a hybrid retort to char biomass. Dissertation. Technical University in Zvolen (2013), pp.1-102.

[38] E. Hroncová, J. Ladomerský, C. Adam: Inovácia techniky pyrolýzy a výroby biouhlia z hľadiska minimalizácie emisií a  skleníkových plynov. Vedecká monografia. Zvolen: TU vo Zvolene (2013).

[39] J. Martinka, D. Kačíková, E. Hroncová, J. Ladomerský: Experimental determination of the effect of temperature and oxygen concentration on the production of birch wood main fire emissions, J. Therm. Anal. Calorim. Vol. 110 (2012), pp.193-198.

DOI: https://doi.org/10.1007/s10973-012-2261-2

[40] Martinka, J., Chrebet, T., Hrušovský, I., Balog, K. 2013. Assessment of the impact of heat flux density on the combustion efficiency and fire hazard of spruce pellets. European Journal of Environmental and Safety Sciences Vol. 1, pp.24-31.

DOI: https://doi.org/10.4028/www.scientific.net/amm.501-504.2451

[41] P. Pitter: Hydrochemie, VŠCHT Praha (2009).

[42] G. Cornelissen, V. Martinsen , V. Shitumbanuma, V. Alling, G.D. Breedveld, D.W. Rutherford, M. Sparrevik, S.E. Hale, A. Obia, J. Mulder: Biochar Effect on Maize Yield and Soil Characteristics in Five Conservation Farming Sites in Zambia Agronomy Vol. 3 (2013).

DOI: https://doi.org/10.3390/agronomy3020256

[43] T.J. Clough, L. M. Condron, C. Kammann, C. Müller: A Review of Biochar and Soil Nitrogen Dynamics Agronomy Vol. 3 (2013), pp.275-293.

DOI: https://doi.org/10.3390/agronomy3020275

[44] K. Harris, J. Gaskin, M. Cabrera, W. Miller, K. Das: Characterization and Mineralization Rates of Low Temperature Peanut Hull and Pine Chip Biochars Agronomy Vol. 3 (2013), pp.294-312.

DOI: https://doi.org/10.3390/agronomy3020294

[45] H. Schulz, G. Dunst, B. Glaser: No Effect Level of Co-Composted Biochar on Plant Growth and Soil Properties in a Greenhouse Experiment  Agronomy Vol. 4 (2014), pp.34-51.

DOI: https://doi.org/10.3390/agronomy4010034

[46] L. Montanarella, E. Lugato: The Application of Biochar in the EU: Challenges and Opportunities.  Agronomy Vol. 3 (2013), pp.462-473.

DOI: https://doi.org/10.3390/agronomy3020462

[47] U. Ogbonnaya, K.T. Semple: Impact of Biochar on Organic Contaminants in Soil: A Tool for Mitigating Risk?  Agronomy Vol. 3 (2013), pp.349-375.

DOI: https://doi.org/10.3390/agronomy3020349

[48] A. Mukherjee, R. Lal: Biochar Impacts on Soil Physical Properties and Greenhouse Gas Emissions  Agronomy Vol. 3 (2013), pp.313-339.

DOI: https://doi.org/10.3390/agronomy3020313

[49] S. Carter, S. Shackley, S. Sohi, T. B. Suy, S. Haefele: The Impact of Biochar Application on Soil Properties and Plant Growth of Pot Grown Lettuce (Lactuca sativa) and Cabbage (Brassica chinensis)  Agronomy Vol. 3 (2013), pp.404-418.

DOI: https://doi.org/10.3390/agronomy3020404

[50] J. Harter, H. M. Krause, S. Schuettler, R. Ruser, M. Fromme, T. Scholten, A. Kappler, S. Behrens: Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. In: The ISME Journal 8 (2014).

DOI: https://doi.org/10.1038/ismej.2013.160

[51] J. Beck, D. Kalderis, E. Agrafioti, E. Diamadopoulos: Country Report on Current Biochar Research, Biochar as Option for Sustainable Resource Management, COST Action TD 1107 (2012).

[52] A. Ďuricová, H. Hybská, J. Mitterpach:  Possibilities of reducing risks of Environment contamination from sewage sludge, Journal of the Geographical Institute Jovan Cvijić, SASA : international conference Natural hazards - Links between science and practice: Belgrade, October 8-11th, Vol. 63 (2013).

DOI: https://doi.org/10.2298/ijgi1303183d

[53] E. Hroncová, J. Ladomerský, C. Adam: The use of wood from degraded land for carbon sequestration, Instytut Technologii Drewna, Drewno Vol. 56 (2013), pp.51-6.

Fetching data from Crossref.
This may take some time to load.