Electronic Properties of Au-Doped Narrow Armchair Graphene Nanoribbons: A First Principle Calculations

Abstract:

Article Preview

The centre Au-doped armchair graphene nanoribbons (AGNRs) are investigated using the local density approximation based on density function theory. The charge density, electronic energy band and project density of states of centre Au-doped AGNRs are calculated. Our results indicate the charge density is transferred between C and Au atoms and mainly located on the Au atoms. The centre Au-doped AGNRs are an indirect band gap semiconductor with an energy gap of 1.046 eV. The Fermi level is located on valence band so that the AGNRs of doping Au become into degenerate semiconductor. The project density of states is calculated to reveal localization and hybridization between C-2p and Au-6s, 5d electronic states. The localization and hybridization are much stronger in the valence band. The hybridization between C-2p and Au-6p electronic states are strongly in the conduction band.

Info:

Periodical:

Edited by:

Z.S. Liu, L.P. Xu, X.D. Liang, Z.H. Wang and H.M. Zhang

Pages:

155-158

Citation:

W. H. Wang et al., "Electronic Properties of Au-Doped Narrow Armchair Graphene Nanoribbons: A First Principle Calculations", Advanced Materials Research, Vol. 1015, pp. 155-158, 2014

Online since:

August 2014

Export:

Price:

$38.00

* - Corresponding Author

[1] K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Science 306 (2004) 666.

[2] J. Hass, R. Feng, J.E.M. Otoya, X. Li, M. Sprinkle, P.N. First, W.A. de Heer, E.H. Conrad, C. Berger, Phys. Rev. B 75 (2007) 214109.

[3] Y.W. Son, M.L. Cohen, and S.G. Louie, Phys. Rev. Lett. 97 (2006) 216803.

[4] X.T. Jia, J. Campos-Delgado, M. Terrones, V. Meunier and M.S. Dresselhaus, Nanoscale 3 (2011) 86.

[5] Q.M. Yan, B. Huang, J. Yu, F.W. Zheng, J. Wu, B.L. Gu, F. Liu, W.H. Duan, Nano Lett. 7 (2007) 1459.

[6] B. Huang, Z.Y. Li, Z.R. Liu, G. Zhou, S.G. Hao, J. Wu, B.L. Gu, and W.H. Duan J. Phys. Chem. C 112 (2008) 13442-13446.

[7] J.W. Jiang, B.S. Wang, and J.S. Wang, Appl. Phys. Lett. 98 (2011) 113114.

[8] N.K. Jaiswal, P. Srivastava, Physica E 44 (2011) 75-79.

[9] G.D. Yu, X.L. Lü, Y.S. Zheng and W.J. Tian, J. App. Phys. 111 (2012) 033707.

[10] Xiaowei Zhang, Oleg V. Yazyev, Juanjuan Feng, Liming Xie, Chenggang Tao, Yen-Chia Chen, Liying Jiao, Zahra Pedramrazi, Alex Zettl, Steven G. Louie, Hongjie Dai, and Michael F. Crommie, ACSNANO 7(2013)198-202.

DOI: https://doi.org/10.1021/nn303730v

[11] Weihua Wang, Guozhong Zhao, Solid State Commun. 166 (2013) 6-11.

[12] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A D, Gironcoli de S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys. Condens. Matter 21 395502.

DOI: https://doi.org/10.1088/0953-8984/21/39/395502

[13] J.Y. Dai, J.M. Yuan, P. Giannozzi, Appl. Phys. Lett. 95 (2009) 232105.

[14] J.Y. Dai, J.M. Yuan, J. Phys: Condens. Matter 22 (2010) 225501.