Improvement of Crystal and Optical Properties of ZnO Film Grown on Hydrogen-Implanted Compliant Si Substrate


Article Preview

Zinc oxide (ZnO) films are deposited on hydrogen (H+)-implanted Si and bare Si substrates respectively by Metal-organic Chemical Vapor Deposition (MOCVD). The properties of the films are investigated with Scanning electron microscopy (SEM), X-ray diffraction (XRD), Atom Force Microscopy (AFM), Raman spectra and Photoluminescence (PL) detections, from which we find that compared with bare Si substrate, H+-implanted Si can act as a compliant substrate (CS) and effectively improve the crystal quality, decrease the inner stress arisen from the misfit between substrate and epitaxial layer, perfect the film surface smooth degree and optimize the optical quality. At the end, the CS working mechanism is discussed.



Edited by:

Z.S. Liu, L.P. Xu, X.D. Liang, Z.H. Wang and H.M. Zhang




B. Yu et al., "Improvement of Crystal and Optical Properties of ZnO Film Grown on Hydrogen-Implanted Compliant Si Substrate", Advanced Materials Research, Vol. 1015, pp. 18-22, 2014

Online since:

August 2014




* - Corresponding Author

[1] U. Ozgur, Y.I. Alivov, Liu C, A. Teke, M.A. Reshchikov, S. Doian, V. Avrutin, S.J. Cho and H. Morkoc, J. Appl. Phys. 98, 041301 (2005).

[2] A. Nahhas, H.K. Kim, and J. Blachere, Appl. Phys. Lett. 78, 1511 (2001).

[3] K. Ogata, T. Kawanishi, K. Maejima, K. Sakurai, Sz Fujita and Sg Fujita, J. Cryst. Growth 237-239, 553 (2002).

[4] J. Zou, S. Zhou, X. Zhang, F. Su, X. Li, and J. Xu, Chin. Opt. Lett. 3, 494 (2005).

[5] A. Ohtomo, K. Tamura, K. Saikusa, K. Takahashi, T. Makino, Y. Segawa, H. Koinuma, and M. Kawasaki, Appl. Phys. Lett. 75, 2635 (1999).


[6] M. Fujita1, N. Kawamoto, M. Sasajima, and Y. Horikoshi, J. Vac. Sci. Technol. B 22, 1484 (2004).

[7] L. Wang, Y. Pu, Y. Chen, C. Mo, W. Fang, C. Xiong, J. Dai and F. Jiang, J. Cryst. Growth 284, 459 (2005).

[8] J. Zhu, B. Lin, X. Sun, R. Yao, C. Shi and Z. Fu, Thin Solid Films 478, 218 (2005).

[9] A. Tsukazaki, A. Ohtomo, S Yoshida, M Kawasaki, C.H. Chia, T. Makino, Y. Segawa, T. Koida, S.F. Chichibu, and H. Koinuma, Appl. Phys. Lett. 83, 2784 (2003).

[10] Y.H. Lo, Appl. Phys. Lett. 59, 2311 (1991).

[11] N.F. Izyumskaya, V.S. Avrutin and A.F. Vyatkin, Solid-State Electronics 48, 1265 (2004).

[12] H. Yin, Appl. Phys. Lett. 82, 3853 (2003).

[13] Y.B. Bolkhovityanov, O.P. Pchelyakov, Physics Uspekhi 51, 437 (2008).

[14] J. Cao, D. Pavlidis, Y. Park, J. Singh, and A. Eisenbach, J. Appl. Phys. 83, 3829 (1998).

[15] B. Gobaut, J. Penuelas, J. Cheng, A. Chettaoui, L. Largeau, G. Hollinger, and G. Saint-Girons, Appl. Phys. Lett. 97, 201908 (2010).


[16] Z. Zhang, Y. Chen, D. Li, F. Zhang, S. Yang, B. Ma, G. Sun, Z. Wang, and X. Zhang, J. Cryst. Growth 257, 321 (2003).

[17] H. Trinkaus, Appl. Phys. Lett. 76, 3552 (2000).

[18] H. Karzel, W. Potzel, M. Koferlein, W. Schiessl, M. Steiner, U. Hiller and G. Kalvius, Phys. Rev. B 53, 11425 (1996).

[19] T.S. Jeong, M.S. Han and C. Youn, J. Appl. Phys. 96, 175 (2004).

[20] F. Decremps, J. Pellicer-porres, A. Saitta, J. Chervin and A. Polian, Phys. Rev. B 65, 092101 (1996).