Determination of Ruthenium in Waste Ruthenium-Loaded Carbon Catalyst Samples Using Teflon Pressure Vessel-Assisted Sample Digestion and ICP-OES

Abstract:

Article Preview

A novel method for the determination of ruthenium in waste ruthenium-loaded carbon catalyst samples was established by inductively coupled plasma optical emission spectrometry after samples digested by Teflon pressure digestion vessel with aqua regia. Such experiment conditions were investigated as the influence of sample dissolution methods, digestion time, digestion temperature and interfering ions on the determination. Under the optimized conditions, the limit of detection (LODs) of Ru for tested solution was 9 ng mL-1. The relative standard deviations (RSDs) for Ru was 2.12 % (CRu = 1 mg L-1, n = 7). The linear range of calibration graph for Ru and Zn was 0 ~ 100.00 mg L-1. The proposed method was applied to determine the practical samples with good recoveries and satisfactory results.

Info:

Periodical:

Edited by:

Z.S. Liu, L.P. Xu, X.D. Liang, Z.H. Wang and H.M. Zhang

Pages:

570-573

Citation:

X. J. Wei and J. M. Pan, "Determination of Ruthenium in Waste Ruthenium-Loaded Carbon Catalyst Samples Using Teflon Pressure Vessel-Assisted Sample Digestion and ICP-OES", Advanced Materials Research, Vol. 1015, pp. 570-573, 2014

Online since:

August 2014

Export:

Price:

$38.00

* - Corresponding Author

[1] D.K. Essumang: Bull. Environ. Contam. Toxicol Vol. 84 (2010), p.720.

[2] M. Takeda, H. Minowa and M. Ebihara: J. Radioanal. Nucl. Chem Vol. 272 (2007), p.363.

[3] S. Scaccia and B. Goszczynska: Talanta Vol. 63 (2004), p.791.

[4] M. Taddia and P. Sternini: Ann. Chim Vol. 91 (2001), p.239.

[5] J.L. Fabec: At. Spectrosc Vol. 4 (1983), p.46.

[6] J.L. Fabec and M.L. Ruschak: Anal. Chem Vol. 55 (1983), p.2241.

[7] I. Jarvis, M.M. Totland and K.E. Jarvis: Analyst Vol. 122 (1997), p.19.

[8] S. Zimmermann, C.M. Menzel, Z. Berner, J. -D. Eckhardt, D. Stüben, F. Alt, J. Messerschmidt, H. Taraschewski and B. Sures: Anal. Chim. Acta Vol. 439 (2001), p.203.

DOI: https://doi.org/10.1016/s0003-2670(01)01041-8

[9] J.D. Whiteley and F. Murray: Sci. Total Environ Vol. 317 (2003), p.121.

[10] B. Sures, S. Zimmermann, J. Messerschmidt, A. Von Bohlen and F. Alt: Environ. Pollut Vol. 113 (2001), p.341.

[11] B. Sures, S. Zimmermann, C. Sonntag, D. Stuben and H. Taraschewski: Environ. Pollut Vol. 122 (2003), p.401.

[12] T. Meisel, N. Fellner and J. Moser: J. Anal. Atom. Spectrom Vol. 18 (2003), p.720.

[13] D. Cinti, M. Angelone, U. Masi and C. Cremisini: Sci. Total Environ Vol. 293 (2002), p.47.

[14] R. Djingova, H. Heidenreich, P. Kovacheva and B. Markert: Anal. Chim. Acta Vol. 489 (2003), p.245.

[15] K. Boch, M. Schuster, G. Risse and M. Schwarzer: Anal. Chim. Acta Vol. 459 (2002), p.257.

[16] O.V. Borisov, D.M. Coleman, K.A. Oudsema and R.O. Carter III: J. Anal. Atom. Spectrom Vol. 12 (1997), p.239.

[17] M. Balcerzak: Anal. Sci Vol. 18 (2002), p.737.

[18] M. Balcerzak, E. Święcicka and E. Balukiewicz: Talanta Vol. 48 (1999), p.39.

[19] T. Suoranta, M. Niemelä and P. Perämäki: Talanta Vol. 119 (2014), p.425.