Overview of Rapid Prototyping for Fabrication of Bone Tissue Engineering Scaffold


Article Preview

The scaffolds of bone tissue engineering (BTE) are designed with complex interconnected pores for providing mechanical support, cell attachment and nutrition delivery, and can be directly fabricated via rapid prototyping (RP). Based on reviews on amount of papers, fundamental of BTE, including research procedure and biomaterials for scaffold are presented. And various RP methods for scaffold fabrication, including selective laser sintering (SLS), fused deposition modeling (FDM), 3 dimension printing (3DP), are introduced. The conclusions including existing problems and future researches about BTE scaffold fabrication are given at the end.



Advanced Materials Research (Volumes 102-104)

Edited by:

Guozhong Chai, Congda Lu and Donghui Wen




Y. F. Liu et al., "Overview of Rapid Prototyping for Fabrication of Bone Tissue Engineering Scaffold", Advanced Materials Research, Vols. 102-104, pp. 550-554, 2010

Online since:

March 2010




[1] P. Sharma, S. Cartmell and A.J. Elhaj: Applications of cell immobilization biotechnology (Springer, Netherlands 2005).

[2] R. Langer, J.P. Vacanti: Science Vol. 260 (1993), pp.920-926.

[3] T.B.F. Woodfield, J. Malda, J.D. Wijn, et al: Biomaterials, Vol. 25 (2004), pp.4149-4161.

[4] S.J. Hollister and Y.L. Chen: Computer Methods in Applied Mechanics and Engineering, Vol. 196 (2007), pp.2991-2998.

[5] K.J.L. Burg, S. Porter and J.F. Kellam: Biomeaterials, Vol. 21 (2000), pp.2347-2359.

[6] M.W. Betz, D.M. Yoon and J.P. Fisher, In: Engineering of functional skeletal tissues (Springer, London, 2007).

[7] Wang Min, In: Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials (Springer, Berlin Heidelberg, 2007).

[8] M. Schieker, H. Seitz, I. Drosse, et al: European Journal of Trauma, Vol. 32 (2006), pp.114-124.

[9] M. Tanaka, K. Yoshizawa, A. Tsuruma, et al: Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol. 313-314 (2008), pp.515-519.

[10] T. Tian, D.L. Liang, J.X. Zhang and Q.L. Lin: Materials Science and Engineering C, Vol. 28 (2008), pp.51-56.

[11] L. Ciocca, F.D. Crescenzio, M. Fantini and R. Scotti: Computerized Medical Imaging and Graphics, Vol. 33 (2009), pp.58-62.

[12] D.W. Hutmacher, M. Sittinger and M.V. Risbud: TRENDS in Biotechnology, Vol. 22 (2004), pp.354-362.

[13] J. Giannatisis and V. Dedoussis: International Journal of Advanced Manufactruring Technology, Vol. 40 (2009), pp.116-127.

[14] Q.B. Liu, M.C. Leu and S.M. Schmitt: International Journal of Advanced Manufacturing Technology, Vol. 29 (2006), pp.317-335.

[15] I. Zein, D.W. Hutmacher, K.C. Tan and S.H. Teoh: Biomaterials, Vol. 23 (2002), pp.1169-1185.

[16] J.M. Williams, A. Adewunmi, R.M. Schek, et al: Biomaterials, Vol. 26 (2005), pp.4817-4827.

[17] K.H. Tan, C.K. Chua, K.F. Leong, et al: Biomaterials, Vol. 24 (2003), pp.3115-23.

[18] S. Yang, K.F. Leong, Z. Du and C.K. Chua: Tissue Engineering, Vol. 8 (2002), pp.1-11.

[19] K.F. Leong, C.M. Cheah and C.K. Chua: Biomaterials, Vol. 24 (2003), pp.2363-2678.

[20] A. Park, B. Wu and L.G. Griffith: Polymer Edition, Vol. 9 (1998), pp.89-110.

[21] C. Liu, Z. Xia and J.T. Czernuszka: Chemical Engineering Research and Design, Vol. 85 (2007), pp.1051-1064.

[22] A. Khalyfa, S. Vogt, J. Weisser, G. Grimm, et al: Journal of Materials Science: Materials in Medicine, Vol. 18 (2007), pp.906-916.