Fabrication of Pyrochlore Gd2Zr2O7 by High Temperature Solid State Reaction

Abstract:

Article Preview

In order to investigate the fabrication of pyrochlore Gd2Zr2O7, Gd2O3 and ZrO2 were used as raw materials in the process. Pyrochlore Gd2Zr2O7 were fabricated by high temperature solid state reaction at 1100 – 1600 °C under atmospheric pressure for 72 h. XRD and SEM studies were exploited to characterize the crystal structure and microstructure of the synthetic samples. The results revealed that Gd2Zr2O7 with a single pyrochlore structure was fabricated successfully at 1500 °C. The microstructure of the sample was uniform and dense, and the grain size was in the range of 1 - 3 μm.

Info:

Periodical:

Advanced Materials Research (Volumes 1061-1062)

Edited by:

Prasad Yarlagadda and Yun-Hae Kim

Pages:

87-90

Citation:

L. Fan et al., "Fabrication of Pyrochlore Gd2Zr2O7 by High Temperature Solid State Reaction", Advanced Materials Research, Vols. 1061-1062, pp. 87-90, 2015

Online since:

December 2014

Export:

Price:

$41.00

* - Corresponding Author

[1] K. Ikeda, T. Kawakita and Y. Ohkubo: Prog. Nucl. Energ. Vol. 37 (2000), pp.163-168.

[2] G.J. McCarthy, W.B. White, R. Roy, B.E. Scheetz, S. Komarzeni, D.S. Smith and D.M. Roy: Nature Vol. 273 (1978), pp.216-219.

[3] A.E. Ringwood, S.E. Kesson, N.G. Ware, W. Hibberson and A. Major: Nature Vol. 278 (1979), p.219.

[4] J.M. Paratte and R. Chawla: Ann. Nucl. Energy Vol. 22 (1995), p.471.

[5] S.J. Patwe and A.K. Tyagi: Ceram. Int. Vol. 32 (2006), p.545.

[6] M. Burghartz, H. Matzke, C. Leger, V. Vambenepe and M. Roma: J. Alloys Compd. Vol. 271 (1998), p.554.

[7] K. Ferguson: Trans. Am. Nucl. Soc. Vol. 75 (1996), p.75.

[8] M. Lang, F. Zhang, J. Zhang, J. Wang, J. Lian and W.J. Weber: Nucl. Instrum. Methods Phys. Res. B. Vol. 268 (2010), pp.2951-2959.

[9] J. Zhang, M. Lang, J. Lian, J. Liu, C. Trautmann and S. Della-Negra: J. Solid State Chem. Vol. 182 (2008), pp.1-7.

[10] L. Kong, I. Karatchevtseva, D.J. Gregg, M.G. Blackford, R. Holmes and G. Triani: J. Eur. Ceram. Soc. Vol. 33 (2013), pp.3273-3285.

[11] B.P. Mandal and A.K. Tyagi: J. Alloys Compd. Vol. 437 (2007), pp.260-263.

[12] B.P. Mandal, M. Pandey and A.K. Tyagi: J. Nucl. Mater. Vol. 406 (2010), pp.238-243.

[13] V. Singh, G. Sivaramaiah, J.L. Rao and S.H. Kim: Physica B Vol. 416 (2013), pp.101-105.

[14] M.A. Subramanian, G. Aravamudan and G.V. Rao Subba: Prog. Solid State Chem. Vol. 15 (1983), pp.55-143.

[15] G.L. Zhan, J.H. Ouyang, Y. Zhou and X.L. Xia: Materials and Design Vol. 30 (2009), pp.3784-3788.

[16] M. Rushton, R.W. Grimes, C. Stanek and S. Owens: J. Mater. Research Vol. 19 (2004), pp.1603-1604.