A Simple Solvothermal Synthesis of Spherical Y2O3:Eu3+

Abstract:

Article Preview

In this study, Y2O3 microspheres have been selectively prepared by solvothermal method, without using any template and catalyst carrier. Based on the systematic analysis of the samples, we have discussed the effects of the thermal treatment temperature on the structure of the Y2O3 microspheres. Besides, we have also investigated the effect of microstructure on the photoluminescence properties of the phosphor, and the impact of rare earth ion doping concentration on the emission intensity of the phosphor. Powder X-ray diffraction analysis of the powders confirmed the formation of cubic Y2O3. Scanning electron microscope observation reveals that the as-synthesized powders are spherical particles of diameter of approximately 3 μm at 180 °C. Photoluminescence measurements indicate that the phosphor exhibits strongest emission peak at 612 nm, corresponding to the 5D0-7F2 electric-dipole transition. In addition, highest luminescence efficiency was observed in the phosphor with the rare earth ion doping concentration of 5%.

Info:

Periodical:

Edited by:

Zou Jianxin

Pages:

58-63

Citation:

M. Lv et al., "A Simple Solvothermal Synthesis of Spherical Y2O3:Eu3+", Advanced Materials Research, Vol. 1088, pp. 58-63, 2015

Online since:

February 2015

Export:

Price:

$38.00

* - Corresponding Author

[1] D. Chen, E.H. Jordan, M.W. Renfro and M. Gell, Solution precursor plasma spray Eu: Y2O3 phosphor coating, Int. J. Appl. Ceram. Technol. 9 (2012) 636–641.

DOI: https://doi.org/10.1111/j.1744-7402.2011.02681.x

[2] J.A. Dorman, J.H. Choi, G. Kuzmanich, and J.P. Chang, Elucidating the Effects of a Rare-Earth Oxide Shell on the Luminescence Dynamics of Er3+: Y2O3 Nanoparticles, J. Phys. Chem. 116 (2012) 10333−10340.

DOI: https://doi.org/10.1021/jp300126r

[3] Na. Ishiwada, T. Ueda and T. Yokomori, Characteristics of rare earth (RE=Eu, Tb, Tm)-doped Y2O3 phosphors for thermometry, J. Lumin. 26 (2011) 381–389.

DOI: https://doi.org/10.1002/bio.1237

[4] E. Tohidlou, Y. Ganjkhanlou, M. Kazemzad and M.S. Afarani, Effect of Zn addition on optical properties and microstructure of Y2O3: Eu nanopowders prepared by combustion method, Phys. Status Solidi. 7 (2010) 2663–2666.

DOI: https://doi.org/10.1002/pssc.200983794

[5] Y. Ganjkhanlou, F.A. Hessari, M. Kazemzad and G. Darbandi, Distribution of Eu ions in Y2O3: Eu nanopowders prepared by solution combustion method, Phys. Status Solidi. 7 (2010) 2667–2670.

DOI: https://doi.org/10.1002/pssc.200983795

[6] A. Watras, R. Pazik, P.J. Deren, Optical properties of Ce3+ doped ABO3 perovskites (A=La, Gd, Y and B=Al, Ga, Sc), J. Lumin. 133 (2013) 35-38.

DOI: https://doi.org/10.1016/j.jlumin.2011.12.031

[7] V.E. Rodionov, I.N. Shmidko, A.A. Zolotovsky and S. P. Kruchinin, Electroluminescence of Y2O3: Eu and Y2O3: Sm films, Mater. Sci. 31 (2013) 232-239.

DOI: https://doi.org/10.2478/s13536-012-0092-2

[8] C. He, Y. Guan, L. Yao, W. Cai, X. Li and Z. Yao, Synthesis and photoluminescence of nano-Y2O3: Eu3+ phosphors, Mater. Res. Bull. 38 (2003) 973–979.

DOI: https://doi.org/10.1016/s0025-5408(03)00089-8

[9] V.V. Bakovets, L.N. Trushnikova, I.V. Korol'kov, P.E. Plyusnin, I.P. Dolgovesova, T.D. Pivovarova and N. I. Alferova, Synthesis of the nanostructured luminophor Y2O3-Eu-Bi by the sol-gel method, Russ. J. Gen. Chem. 83 (2013) 1-9.

DOI: https://doi.org/10.1134/s1070363213010015

[10] Z.H. Xu, Y. Guo, T. Liu, L. M Wang, S.S. Bian, J. Lin, General and facile method to fabricate uniform Y2O3: Ln3+ (Ln3+ = Eu3+, Tb3+) hollow microspheres using polystyrene spheres as templates, J. Mater. Chem. 40 (2012) 21695-21703.

DOI: https://doi.org/10.1039/c2jm34868c

[11] J. Wang, M. Hojamberdiev, Y.H. Xu, Effects of different organic additives on the formation of YVO4: Eu3+ microspheres under hydrothermal conditions, Solid State Sci., 13 (2011) 1401-1406.

DOI: https://doi.org/10.1016/j.solidstatesciences.2011.04.012

[12] M. Back, M. Boffelli, A. Massari, R. Marin, F. Enrichi and P. Riello, Energy transfer between Tb3+ and Eu3+ in co-doped Y2O3 nanocrystals prepared by Pechini method, J. Nanopart. Res. 15 (2013) 1753-1755.

DOI: https://doi.org/10.1007/s11051-013-1753-8

[13] F. Gudarzy, A.B. Moghaddam, S. Mozaffari, Y. Ganjkhanlou, M. Kazemzad, R. Zahed and F. Bani, A lanthanide nanoparticle-based luminescent probe for folic acid, Mikrochim. Acta. 180 (2013) 1257-1262.

DOI: https://doi.org/10.1007/s00604-013-1050-3

[14] R. Gunawidjaja, T. Myint and H. Eilers, Temperature-Dependent Phase Changes in Multicolored ErxYbyZr1–x–yO2/Eu0. 02Y1. 98O3 Core/Shell Nanoparticles, J. Mater. Chem. 117 (2013) 14427−14434.

DOI: https://doi.org/10.1021/jp404114u

[15] L. Tong, J. Shi, D. Liu, Q. Li, X. Ren and H Yang, Luminescent and Magnetic Properties of Fe3O4@ SiO2@ Y2O3: Eu3+ Composites with Core–Shell Structure, J. Phys. Chem. 116 (2012) 7153−7157.

DOI: https://doi.org/10.1021/jp212579t

[16] X.L. Liu, P.X. Zhu, Y.F. Gao and R.H. Jin, Synthesis of free-standing sub-10 nm Y2O3: Eu particles on silica nanowire matrix and amplified luminescence performance, J. Mater. Chem. 1 (2013) 477-483.

DOI: https://doi.org/10.1039/c2tc00139j

[17] G .A. Sotiriou, M. Schneider and S.E. Pratsinis, Color-Tunable Nanophosphors by Co-doping Flame-Made Y2O3 with Tb and Eu, J. Phys. Chem. 115 (2011) 1084-1089.

DOI: https://doi.org/10.1021/jp106137u

Fetching data from Crossref.
This may take some time to load.