Jointing of Zirconia Ceramic and Titanium Alloy

Abstract:

Article Preview

Zirconia ceramic and titanium alloy were jointed by using an AgCuTi amorphous alloy as a solder. The microstructure and the properties of the joint are investigated. The results show that the microstructure and mechanical properties of the brazing seam are influenced by the brazing temperature, the heat time and the cooling rate. The shear strength of the joint decreases with increasing of the brazing temperature, the heat time and the cooling rate increase. The maximum shear strength of the joints reaches 178 Mpa. The optimal technical parameters are the brazing temperature of 1123 K, the heat time of 10 min and the cooling rate of 5 K/min.

Info:

Periodical:

Edited by:

Yun-Hae Kim

Pages:

305-310

Citation:

X. F. Hu, "Jointing of Zirconia Ceramic and Titanium Alloy", Advanced Materials Research, Vol. 1094, pp. 305-310, 2015

Online since:

March 2015

Authors:

Export:

Price:

$38.00

* - Corresponding Author

[1] Hanson, W. B., K. I. Ironside, Fernie, J. A. 2000. Active metal brazing of zirconia. Acta Mater. 48: 4673 to 4676.

DOI: https://doi.org/10.1016/s1359-6454(00)00256-1

[2] Hao, H., Wang, Y., Jin, Z., Wang, X. 1995. Joining of zirconia ceramic to stainless steel and to itself using Ag57Cu38Ti5 filler metal. J. Am. Ceram. Soc. 78: 2157 to 2160.

DOI: https://doi.org/10.1111/j.1151-2916.1995.tb08629.x

[3] Wang, X. H., Zhou, Y. C. 2010. Layered Machinable and Electrically Conductive Ti(2)AlC and Ti(3)AlC(2) Ceramics: a Review. J. Mater. Sci. Technol. 26: 385 to 416.

[4] Muolo, M. L., Ferrera, E., Morbelli, L., Passerone, A. 2004. Wetting, spreading and joining in the alumina-zirconia-Inconel 738 system. Scripta Mater. 50: 325 to 330.

DOI: https://doi.org/10.1016/j.scriptamat.2003.10.015

[5] Smorygo, O., Kim, J. S., Kim, M. D., Eom, T. G. 2007. Evolution of the interlayer microstructure and the fracture modes of the zirconia/Cu-Ag-Ti filler/Ti active brazing joints. Mater. Lett. 61: 613 to 616.

DOI: https://doi.org/10.1016/j.matlet.2006.05.024

[6] Durov, A. V., Kostjuk, B. D., Shevchenko, A. V., Naidich, Y. V. 2000. Joining of zirconia to metal with Cu-Ga-Ti and Cu-Sn-Pb-Ti fillers. Mater. Sci. Eng. A 290: 186 to 189.

DOI: https://doi.org/10.1016/s0921-5093(00)00916-3

[7] Durov, A. V., Naidich, Y. V., Kostyuk, B. D. 2005. Investigation of interaction of metal melts and zirconia', J. Mater. Sci. 40: 2173 to 2178.

DOI: https://doi.org/10.1007/s10853-005-1928-5

[8] Singh, M., Shpargel, T. P., Asthana, R. 2007. Brazing of stainless steel to yttria-stabilized zirconia using gold-based brazes for solid oxide fuel cell applications. Int. J. Appl. Ceram. Technol. 4: 119 to 133.

DOI: https://doi.org/10.1111/j.1744-7402.2007.02126.x

[9] Kalin, B. A., Fedotov, V. T., Grigoriew, A. E. 1995. Application of amorphous filler metals in production of fusion reactor high heat flux components. Fusion Eng. Des. 28: 119 to 124.

DOI: https://doi.org/10.1016/0920-3796(94)00134-s

[10] Szewieczek, D., Tyrlik, J. 1995. Designing the brazed joint properties with application of amorphous tape as a filler metal. J. Mater. Process. Technol. 53: 405 to 412.

DOI: https://doi.org/10.1016/0924-0136(95)01997-s

[11] Rabinkin, A. 2004. Brazing with (NiCoCr)-B-Si amorphous brazing filler metals: alloys, processing, joint structure, properties, applications. Sci. Technol. Weld. Join. 9: 181 to 199.

DOI: https://doi.org/10.1179/136217104225012300

[12] Singh, M., Asthana, R., Shpargel, T. P. 2008. Brazing of ceramic-matrix composites to Ti and Hastealloy using Ni-base metallic glass interlayers. Mater. Sci. Eng. A 498: 19 to 30.

DOI: https://doi.org/10.1016/j.msea.2007.11.150

[13] Singh, M., Asthana, R. 2007. Joining of zirconium diboride-based ultra high-temperature ceramic composites using metallic glass interlayers. Mater. Sci. Eng. A 460: 153 to 162.

DOI: https://doi.org/10.1016/j.msea.2007.01.015

[14] Kim, Y. C., Kim, W. T., Kim, D. H. 2004. A development of Ti-based bulk metallic glass. Mater. Sci. Eng. A 375: 127 to 135.

[15] Torun, O., Celikyurek, I. 2009. Boriding of Diffusion Bonded Joints of Pure Nickel to Commercially Pure Titanium. Mater Design 30: 1830 to 1834.

DOI: https://doi.org/10.1016/j.matdes.2008.07.047

[16] Lin, T. S., Yang, M. X., He, P., Huang, C., Pan, F., Huang, Y. D. 2011. Effect of in situ synthesized TiB whisker on microstructure and mechanical properties of carbon-carbon composite and TiBw/Ti-6Al-4V composite joint. Mater Design 32: 4453 to 4458.

DOI: https://doi.org/10.1016/j.matdes.2011.04.028

[17] Jiang, W. C., Gong, J. M., Tu, S. D., Fan, Q. S. 2009. Microstructure of high temperature Ti-based brazing alloys and wettability on SiC ceramic. Mater Design, 30: 275 to 729.

DOI: https://doi.org/10.1016/j.matdes.2008.04.070

[18] Botstein, O., Rabinkin, A. 1994. Brazing of titanium-based alloys with amorphous 25wt. %Ti-25wt. %Zr-50wt. %Cu filler metal. Mater. Sci. Eng. A 188: 305 to 315.

DOI: https://doi.org/10.1016/0921-5093(94)90386-7

[19] Zou, J. S., Jiang, Z. G., Zhao, Q. Z., Chen, Z. 2009. Brazing of Si(3)N(4) with amorphous Ti(40)Zr(25)Ni(15)Cu(20) filler. Mater. Sci. Eng. A 507: 155 to 160.