Spectral Hole Burning in Sol-Gel-Derived Eu3+-Doped Al2O3-B2O3-SiO2 Glass


Article Preview

Al2O3-B2O3-SiO2 glass containing europium ions was prepared by a sol-gel method. The excitation spectrum of the Eu3+ ions in the glass consists of the charge transfer and f-f transition absorptions of the Eu3+ ions. The emission spectrum indicates the coexistence of the Eu2+ and Eu3+ ions. The formation of some reducing agents in the heat-treatment process should be responsible for the reduction from Eu3+ to Eu2+ ions. The fluorescence line-narrowing spectra reveal that there are two different environments for the Eu3+ ions. Persist spectral hole was burned in the excitation of the 5D0-7F0 transition of the Eu3+ ions. We suggested a possible mechanism on the persistent spectral hole burning of the Eu3+ ion in the glass.



Advanced Materials Research (Volumes 11-12)

Main Theme:

Edited by:

Masayuki Nogami, Riguang Jin, Toshihiro Kasuga and Wantai Yang






H. P. You et al., "Spectral Hole Burning in Sol-Gel-Derived Eu3+-Doped Al2O3-B2O3-SiO2 Glass", Advanced Materials Research, Vols. 11-12, pp. 201-204, 2006

Online since:

February 2006




[1] M. Nagami and K. Suzuki: Adv. Mater. Vol. 14 (2002), p.923.

[2] P. Mikhail, J. Hulliger, M. Schnieper and H. Bill: J. Mater. Chem. Vol. 10 (2000), p.987.

[3] K. Fujita, K. Tanaka, K. Hirao and N. Soga: J. Opt. Soc. Am. B Vol. 15 (1998), p.2700.

[4] D. Cho, K. hirao, K. Fujita and N. Soga: J. Am. Ceram. Soc. Vol. 79 (1996), p.327.

[5] A. Furusawa, K. Horie, K. Kuroki and I. Mita: J. Appl. Phys. Vol. 66 (1989), p.6041.

[6] J. Zhang, S. Huang and J. Yu: Opt. Lett. Vol. 17 (1992), p.1146.

[7] M. Nogami, Y. Abe and K. Hirao: Appl. Phys. Lett. Vol. 66 (1995), p.2952.

[8] K. Hirao, S. Todoroki, D.H. Cho and N. Soga: Opt. Lett. Vol. 18 (1993), p.1586.

[9] M. Nogami and T. Ishikawa: Phys. Rev. B Vol. 63 (2001), p.104205.

[10] H. You and M. Nogami: J. Phys. Chem. B Vol. 108 (2004), p.12003.

[11] E.L. Yee, O.A. Gansow and M.J. Weaver: J. Am. Chem. Soc. Vol. 102 (1980), p.2278.

[12] V.C. Costa, M.J. Lochhead and K.L. Bray: Chem. Mater. Vol. 8 (1996), p.783.

[13] H. You and M. Nogami: J. Phys. Chem. B Vol. 109 (2005), p.13980.

[14] R.M. Macfarlane and R.M. Shelby: Opt. Commun. Vol. 45 (1983), p.46.

[15] T. Schmidt, R.M. Macfarlane and S. Völker: Phys. Rev. B Vol. 50 (1994), p.15707.

[16] G.J. Park, T. Hayakawa and M. Nogami: J. Sol-Gel Sci. Tech. Vol. 33 (2005), p.47.

[17] M. Nogami, T. Ishikawa and T. Hayakawa: J. Lumin. Vol. 96 (2002), p.163.

[18] K. Fujita, K. Tanaka, K. Hirao and N. Soga: J. Opt. Soc. Am. B Vol. 15 (1998), p.2700.

[19] K. Fujita, M. Nishi, K. Tanaka and K. Hirao: J. Phys. Condens. Mater. Vol. 13 (2001), p.6411.

In order to see related information, you need to Login.